Ultrafast Dynamics at the Nanoscale

Biomolecules and Supramolecular Assemblies

edited by Irene Burghardt | Stefan Haacke

Ultrafast Dynamics at the Nanoscale

Ultrafast Dynamics at the Nanoscale

Biomolecules and Supramolecular Assemblies

^{edited by} Irene Burghardt Stefan Haacke

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Ultrafast Dynamics at the Nanoscale: Biomolecules and Supramolecular Assemblies

Copyright © 2017 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4745-33-8 (Hardcover) ISBN 978-981-4745-34-5 (eBook)

Printed in the USA

Contents

Prefa	се
-------	----

SECTION I EXPERIMENT

xiii

1	1 Excited States of Single-Stranded DNA Revealed by				
	Femtosecond Transient Absorption Spectroscopy				
	Berr	n Kohlei	r		
	1.1	Intro	luction	4	
		1.1.1	Origins	5	
	1.2	The T	A Experiment	6	
		1.2.1	The TA Signal	8	
		1.2.2	Dispersive Pulse Broadening and Temporal		
			Walk-off	11	
	1.3	Trans	ient Absorption Signal Strength	14	
		1.3.1	Bleach Recovery Signals	18	
		1.3.2	DNA TA Experiments	19	
	1.4	Excite	ed-State Dynamics of Single DNA Strands	22	
		1.4.1	Structure of (dA) _n Single Strands	25	
		1.4.2	TA Signals from $(dA)_n$ Single Strands	30	
		1.4.3	Estimating Quantum Yields from Bleach		
			Signals	34	
		1.4.4	Exciton Dynamics	41	
	1.5	Sumn	nary	43	
2	Ultr	afast Li	ght-Induced Processes in DNA Photolyase and Its		
	Sub	strate-E	Bound Complex	65	
	Klau	s Brett	el, Martin Byrdin, and Marten H. Vos		
	2.1	Intro	luction	65	

	2.2	Energy Transfer	69
	2.3	Photoactivation	70
	2.4	Photorepair	75
3	Dyn	amics and Mechanisms of Ultraviolet-Damaged DNA	
	Rep	air by Photolyases	91
	Zhe	yun Liu, Lijuan Wang, and Dongping Zhong	
	3.1	ind substan	92
	3.2	Reaction Mechanism of CPD Repair by	
		Photolyase	94
	3.3	1 5	
		Photolyase	101
		Electron-Tunneling Pathways in DNA Restoration	106
	3.5	Concluding Remarks	117
4	Pho	toactive Yellow Protein: Converting Light into a	
	Met	tastable Structural Change	127
	Mar	rie Louise Groot and Klaas J. Hellingwerf	
	4.1	Introduction	128
	4.2		131
	4.3	Timescale and Mechanism of Isomerization	134
		4.3.1 Timescales	134
		4.3.2 Isomerization	136
		4.3.2.1 Excited state	137
		4.3.2.2 I ₀ state	137
		4.3.2.3 I_1 state	139
		4.3.3 Mechanism	141
	4.4	Role of Charges in the Protein Cavity	142
	4.5	Role of Hydrogen Bonds to the Phenol Ring	
		and the Carbonyl Group of the Chromophore	143
		4.5.1 Hydrogen Bonds to the Phenol Ring	143
		4.5.2 Hydrogen Bonds to the Carbonyl Group	146
	4.6	Role of Water Molecules	147
	4.7	Emerging Picture and Open Questions	148
	4.8	Applications of PYP: General Aspects	150
	4.9	Applications of PYP: Examples	152

Prot	eins	
Svet	lana V.	Sizova, Vladimir A. Oleinikov,
Nico	las Boı	ıchonville, Michael Molinari, Pavel Samokhvalov,
Alyo	na Suk	hanova, and Igor Nabiev
5.1	Intro	luction
5.2	Possil	ble Energy Transfer Mechanisms in
	Nanol	biohybrid Structures Based on Photosensitive
	Biom	olecules and Quantum Dots: Nonradiative and
	Radia	tive Energy Transfer
5.3	The Q	uantum Dot-Bacteriorhodopsin Nanobiohybrid
	Struct	ture
	5.3.1	Bacteriorhodopsin: Structure and Function
	5.3.2	Energy Coupling between Quantum Dots and
		Bacteriorhodopsin in Aqueous Media
	5.3.3	Methods of Forming Heterostructures
		Containing Quantum Dot-Bacteriorhodopsin
		Complexes
	5.3.4	
		Dried Films as Media for Sensing and Optical
		Applications
	5.3.5	Enhancement of the Biological Functions of
		Bacteriorhodopsin by Means of Coupling with
		Quantum Dots
5.4		uantum Dot-Photosynthetic Reaction Center
	Nanol	biohybrid Structure
	5.4.1	5
		Structure and Properties
	5.4.2	e e
		Bacterial Reaction Centers
5.5	Concl	usions and Perspectives

Reporters and Femtosecond 2D Spectroscopy207Andrea Cannizzo, Jérémie Léonard, and Stefan Haacke2086.1 Introduction208

6.2	6.2 Photoinduced Charge Translocation and Dynamic		
	Dieleo	ctric Response	210
	6.2.1	Ultrafast Response of Amino Acids: Example of	
		Retinal Proteins	210
	6.2.2	Photoinduced Charge Transfer and Dielectric	
		Dynamics Probed by Transient Trp Absorption	214
6.3	Local	Fluctuation and Energy Redistribution in	
	Biomo	blecules	216
	6.3.1	Solvation and Local Fluctuation	216
	6.3.2	Dissipation and Redistribution of Energy in	
		Hemoproteins	218
6.4	Track	ing Down Concerted Motions in Proteins and	
	Molec	ular Devices: An Outlook on Coherent UV	
	Spect	roscopies	226
	6.4.1	UV Multidimensional Spectroscopies	226
	6.4.2	Pulse Shaping and Automatized UV 2D	
		Spectrographs	233
	6.4.3	All-Optical Chemically Sensitive Coherent	
		Spectroscopies	236
6.5	Concl	usions/Final Remarks	238

SECTION II THEORY

Ultra	Ultrafast Exciton Dynamics in Correlated Environments			257	
Peter Nalbach					
7.1	Photo	synthesi	s and Energy Transfer	257	
7.2	Quant	tum Dyna	amics in Fluctuating Environments	260	
	7.2.1	System-	-Environment Models	261	
		7.2.1.1	Quantum Langevin equation	262	
		7.2.1.2	Spin-boson model	264	
		7.2.1.3	Bloch equations	266	
	7.2.2	Method	s: RESPET and QUAPI	267	
		7.2.2.1	Weak coupling approximation	267	
		7.2.2.2	Correlated environmental fluctuations	269	
7.3	Excita	tion Ene	rgy Transfer Dynamics	272	
	7.3.1	Energy	Transfer in Donor–Acceptor Systems	274	
		7.3.1.1	Multiphonon transitions	275	
	Pete 7.1 7.2	Peter Nalba 7.1 Photo 7.2 Quant 7.2.1 7.2.2 7.3 Excita	Peter Nalbach 7.1 Photosynthesi 7.2 Quantum Dyna 7.2.1 System 7.2.1.1 7.2.1.2 7.2.1.3 7.2.2 Method 7.2.2.1 7.2.2.2 7.3 Excitation Energy	7.1 Photosynthesis and Energy Transfer7.2 Quantum Dynamics in Fluctuating Environments	

		7.3.1.2 Coherence due to temp	oral	
		correlations	27	7
		7.3.1.3 Influence of spatial cor	relations 27	8
		7.3.2 Exciton Dynamics in the FMO C	omplex 28	0
		7.3.2.1 Coherence times in the	FMO complex 28	3
		7.3.2.2 High-energy vibrations	s 28	5
	7.4	Summary and Outlook	28	6
8		ation Energy Transfer in Light-Harvestin		
		ory, Models, and Application	29)3
	-	ıfei Huo and David F. Coker		
	8.1	Introduction	29	
		Partial Linearized Density Matrix Prop	0	
		Model Hamiltonian	30	6
	8.4	Short-Time Coherent Dynamics and Lo	•	
		Thermal Equilibrium from PLDM Prop	•	1
	8.5	The Eight-Site FMO Complex: A Model		
		Initial Excitation	31	6
	8.6	Strength of System–Environment Coup	• •	
		Energy Transfer Dynamic Turnover Be		
		Excitation Dynamics in Phycocyanin 6		
		Correlations between Site Energy Fluc		
	8.9	Concluding Remarks	32	9
9		ging the Gap between Coherent and Inco		
		nance Energy Transfer Dynamics by Qua	antum Master 33	
	-	ntions in the Polaron Picture) /
	-	Introduction	33	7
		System–Bath Hamiltonian and Formal		1
).2	Quantum Master Equation	34 JACC	.0
	9.3	QME in the Weak System–Bath Couplin		
	7.5	9.3.1 Time-Nonlocal Equation	34 ag	
		9.3.2 Time-Local Equation	34	
	94	QME in the Polaron Picture	34	
	9.5	Practical Issues	35	
	2.5	9.5.1 Physical Observables in the Pola		
		9.5.2 Assessment of Quantum Cohere		
		sista hissessment of Quantum Collere		0

		9.5.3 Nu	umerical Implementation	356
	9.6	Model Ca	lculations	357
		9.6.1 Tv	vo-State System	357
		9.6.2 Th	ree-State System	361
	9.7	Applicati	ons	364
	9.8	Summary	y and Outlook	366
10	The	ory of Me	etal Nanoparticle–Affected Optical and	
		•	operties in Supramolecular Complexes	371
	Yua	n Zhang, N	Yaroslav Zelinskyy, Gerold Kyas,	
		l Volkhard		
		1 Introd		371
	10.	2 Collect	tive Excitations of Metal Nanoparticle	
		Electro		376
			Description of Dipole Plasmons	376
			Description of Multipole Plasmons	378
	10.		ule Metal Nanoparticle Coupling	381
	10.		ption of a Spherical MNP	384
		10.4.1	Coupling of an SC to a Spherical MNP	384
	10.	5 Photoi	nduced Processes in a Supramolecular	
		Compl	ex Coupled to a Metal Nanoparticle	385
			Density Matrix Theory	388
		10.5.2	Photoinduced Excitation Energy	
			Transfer	389
		10.5.3	Linear Absorption	393
		10.5.4	Emission	395
	10.	6 Conclu	iding Remarks	401
11	Ult	rafast Ene	rgy and Charge Transfer in Functional	
	Мо	lecular Na	anoscale Aggregates	407
	Hire	oyuki Tami	ura, Keith H. Hughes, Rocco Martinazzo,	
	Jan	Wahl, Rol	bert Binder, and Irene Burghardt	
	11.	1 Introd	uction	407
	11.	2 Electro	on–Hole Lattice Hamiltonian	410
		11.2.1	Electron–Hole Basis	410
		11.2.2	Wave Functions and Density Matrix	
			Representation	412

		11.2.3 Vibronic Hamiltonian in the e-h Basis	413	
		11.2.4 Effective-Mode Reduction Techniques	416	
	11.3	Quantum-Dynamical Calculations Using		
		Multiconfigurational Methods	419	
	11.4	Exciton Migration and Relaxation at a Torsional		
		Defect Site	420	
		11.4.1 Hamiltonian	421	
		11.4.2 Ultrafast Exciton Relaxation	422	
	11.5	Exciton Dissociation at an		
		Oligothiophene-Fullerene Junction	424	
		11.5.1 Hamiltonian	425	
		11.5.2 Primary Exciton Break-Up Step	425	
		11.5.3 Formation of Charge-Separated States	426	
	11.6	Conclusions and Outlook	429	
12		fast Spectroscopy: Quantum Information and Wave	437	
	Packets			
		fuen-Zhou, Jacob J. Krich, Ivan Kassal, and		
		Aspuru-Guzik Introduction	438	
			430	
	12.2	The Quantum Process Matrix χ	439 440	
		12.2.1 Properties and Examples		
	122	12.2.2 QPT Algorithms	442 443	
		The Model System	443 449	
	12.4		449	
	12.5	Relationship between Frequency-Integrated PP'	450	
	12.0	Spectra and the Process Matrix $\chi(T)$	456	
	12.6	Conclusions	462	
13	Simu	lating the Nonlinear Optical Response of		
		chromophore Complexes	467	
		d G. Dijkstra and Yoshitaka Tanimura		
	13.1	-		
		Environment	468	
	13.2	Classical and Adiabatic Environment: Vibrations in		
		Peptides	472	

13.3	Quantum Environment: Electronic Excitations in		
	Molecular Aggregates	477	
13.4	Nonlinear Spectra: Correlations and Line Shape	483	
13.5	Conclusion	487	
Index		489	

Preface

Over the past decade, research on ultrafast (bio)molecular dynamics has evolved significantly, from spotlighting isolated molecular species toward focusing on molecular assemblies, including chromophore-protein complexes, biopolymers like DNA and RNA, and functionalized systems like combinations of biomolecules and inorganic nanoparticles, plasmonic nanostructures, and semiconducting polymer materials. Potential applications range from light harvesting to biosensing, artificial signal transduction, and organic photovoltaics. The functionality and control of these systems are currently under intense investigation in view of developing a detailed understanding of ultrafast nanoscale energy and charge transfer, as well as fostering novel technologies based on sustainable energy resources. At the same time, fundamental issues like the role of quantum coherence versus decoherence have moved into focus. The book aims to illustrate this evolution—which is far from complete at the time of publication—with contributions from top researchers in the field.

The book groups together 13 chapters, comprising 6 contributions from spectroscopy and 7 from theory and computation. Within a broad range of topics, from DNA photostability and repair to light-harvesting complexes and novel hybrid materials, a common denominator is the key importance of ultrafast quantum effects at the border between the molecular scale and the nanoscale. Contributions include cutting-edge developments in ultrafast nonlinear optical spectroscopies and quantum dynamical simulations of the observed dynamics, including direct simulations of two-dimensional optical experiments. Taken together, these techniques attempt to elucidate whether the quantum coherent nature of the ultrafast events persists in the presence of strong vibronic interactions and electrostatic couplings to the environment. Moreover, it is still an open issue to date whether the coherent nature of the elementary events possibly enhances the efficiency of the relevant processes and where the quantum-classical boundary sets in in these highly complex biological and material systems.

The first experimental contribution, by B. Kohler (Chapter 1), offers a didactic introduction to the fundamental concepts of ultrafast transient absorption spectroscopy in the context of investigating isolated DNA bases or single-stranded DNA. This review emphasizes the recent progress in understanding how base stacking influences the excited-state electronic structure and modulates nonradiative processes such as exciton and charge transfer involving neighboring nucleic acid bases. These studies are also driven by the general interest in ultrafast nonradiative internal conversion processes, which are believed to protect DNA from photodamage by UV light.

Active photoinduced repair of DNA is carried out by photolyases, that is, photoreactive enzymes which were discovered more than 50 years ago. Two contributions in this book highlight the recent advances made in dissecting the molecular details and reaction steps of enzyme photoactivation, involving ultrafast intraprotein charge transfer processes, and repair of different types of lesions. K. Brettel, M. Byrdin, and M. Vos (Chapter 2) devised a special transient absorption experiment with high sensitivity dedicated to the investigation of how DNA photolyases repair so-called CPD lesions, involving forward and backward electron transfer between the photolyase enzyme and a defective covalently linked thymine pair site. D. Zhong and his collaborators (Chapter 3) report results for the same type of system and complete this topic by reviewing their present understanding of the electron and proton transfer processes between photolyase cofactors and the nucleobases involved in repair of mutagenic so-called 6-4PP lesions. Both studies demonstrate the power of ultrafast multiwavelength transient absorption spectroscopy in revealing reaction kinetics and quantum yields, but also the particular effort involving the investigation of many mutants and molecular variants-a tour de force that is required to identify the often overlapping spectral signatures of the multiple species involved in these complex photoreactions.

The photoactive yellow protein (PYP) is a prototypical photosensor protein used by some bacteria to avoid harmful UV light (negative phototactic response). M. Groot and K. Hellingwerf (Chapter 4) have worked out the intimate details of the primary photoreactions involving a subpicosecond photoisomerization of the *p*-coumaric acid chromophore, the covalently bound cofactor of PYP. Besides providing a review of the different complementary time-resolved spectroscopy and X-ray diffraction techniques, the authors' report on the investigation of point-mutated PYP provides critical information on how the protein environment tunes and controls the different kinetic steps in the PYP photocycle.

Inspired by the concept of light harvesting through distributed multichromophore absorption, I. Nabiev and his team (Chapter 5) have implemented new nanobio hybrid materials, where semiconductor quantum dots with highest extinction coefficients are covalently bound to bacteriorhodopsin or photosynthetic reaction centers. The process of Förster resonant energy transfer (FRET) was studied in detail for these novel donor–acceptor systems, along with the key question of how the functional efficiency of these hybrids is enhanced as compared to the bare proteins. This work exemplifies an important emerging research direction aimed at exploiting the synergy of biomolecules and synthetic nanostructures in hybrid materials for improved photon harvesting and energy conversion.

In the final experimental chapter, A. Cannizzo et al. (Chapter 6) present different approaches to directly probe the spectroscopic response of the protein environment interacting and modulating the ultrafast photochemistry of the reactive cofactor. The authors summarize their work on using Trp residues as local reporters through intraprotein Stark effects or energy transfer. Two-dimensional femtosecond spectroscopy techniques are in principle the method of choice for the investigation of coupled multichromophoric systems. The present progress of their challenging implementation in the near-UV spectral region, targeting amino acids or nucleobases, is reviewed.

On the theory side, the Fenna–Matthews–Olson (FMO) complex, a pigment–protein complex appearing in green sulfur bacteria, has served as a paradigm system over recent years for studying excitation energy transfer in biological light-harvesting systems. The chapters by P. Nalbach (Chapter 7) and P. Huo and D. Coker (Chapter 8) both address this system, using path integrals, master equation techniques, and novel mixed quantum-classical approaches to solve the highly non-Markovian, correlated quantum dynamics of this multichromophoric system. Key issues include the role of spatial and temporal correlations in inducing long-lived excitonic coherences and the relevance of these coherences for the efficiency of the light-harvesting process. While earlier contributions in this field were strongly suggestive of an enhanced quantum efficiency of biological light harvesting, the viewpoint by Nalbach, Huo, and Coker tends to be critical in this regard.

In the following contribution, S. Jang (Chapter 9) develops a quantum master equation in the polaron picture, which is able to interpolate between the coherent and incoherent regimes of excitation energy transfer in multichromophoric systems. Together with the approaches mentioned above, this work illustrates the importance of adapting existing quantum propagation techniques to the treatment of high-dimensional systems that do not allow for standard approximations like weak-coupling limits or separation of timescales. Instead, alternative zeroth-order pictures need to be found—as exemplified by the polaron transformation—that are able to capture the strong vibronic (electron–phonon) coupling effects that are ubiquitous in biological systems and organic materials.

The theoretical treatment of hybrid assemblies involving metal nanoparticles and single molecules or molecular assemblies is an important and challenging aspect accompanying recent experimental developments in this area (cf. Chapter 5 by I. Nabiev). Indeed, plasmonics—relating to the specific spectroscopic and transport properties of collective electronic excitations in noble metal nanoparticles—has become a rapidly emerging area within the field of nanotechnology, sensing, and biophotonics. Against this background, V. May and collaborators (Chapter 10) develop a consistent time-dependent quantum description, at a density matrix level, of resonant energy transfer involving multipole collective electronic excitations of the metal nanoparticle and molecular transitions of the acceptor system. This elegant approach naturally connects to the class of master equation approaches mentioned above.

The contribution by H. Tamura et al. (Chapter 11) addresses photoinduced energy and charge transfer in organic photovoltaic materials, using a combination of electron-hole model Hamiltonians parametrized by electronic structure calculations, and highdimensional quantum dynamics using efficient multiconfigurational methods. This approach offers an alternative to master equation and path integral strategies, attempts to build a maximum of molecular information into a first-principles parametrized model Hamiltonian, and systematically exploits the lattice structure of the relevant materials. As a result, a precise picture of highly nonexponential, non-Markovian transfer processes in composite donor-acceptor systems can be obtained, as exemplified by a study of the fullerenebased P3HT–PCBM paradigm system.

The final theory chapters by J. Yuen-Zhou, A. Aspuru-Gúzik and collaborators (Chapter 12) as well as A. Dijkstra and Y. Tanimura (Chapter 13) are concerned with the simulation of nonlinear optical spectroscopic experiments with a focus on multichromophoric assemblies. The interpretation of such experiments, which encode information on transport processes in spectral signatures (e.g., cross-peaks in two-dimensional spectroscopies) is often complex and critically relies on theoretical analysis. In this context, Yuen-Zhou et al. give a didactic introduction to pump-probe spectroscopy, connecting to a quantum information theory setting, while Dijkstra and Tanimura focus on two-dimensional spectra and explore the quantum-classical transition from the viewpoint of spectroscopic observables.

While being far from comprehensive, we believe that the present collection of contributions provides a combined experimental and theoretical spotlight on the molecular-level investigation of lightinduced quantum processes in biological systems and nanostructured assemblies. We hope that this collection will inspire future experiment-theory connections at this frontier between molecular and nanoscale quantum phenomena.

We would like to express our sincere gratitude to the authors, colleagues, and friends who joined this book project with the

aspiration to present their research in a creative and pedagogical style. Finally, we are most grateful to the editorial team at Pan Stanford Publishing for its invaluable help with publishing this volume.

> Irene Burghardt Stefan Haacke Frankfurt and Strasbourg, July 2016