Graphene in Spintronics Fundamentals and Applications

Jun-ichiro Inoue Ai Yamakage Shuta Honda

Graphene in Spintronics

Graphene in Spintronics

Fundamentals and Applications

Jun-ichiro Inoue Ai Yamakage Shuta Honda

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Graphene in Spintronics: Fundamentals and Applications

Copyright © 2016 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4669-56-6 (Hardcover) ISBN 978-981-4669-57-3 (eBook)

Printed in the USA

Contents

Preface				xi	
					1
1		ntroduction			
	1.1 General Features of Graphene			2	
				rbon Elements to Carbon Lattices	2
		1.1.2	Fabricati	ion Method of Graphene Sheets	4
		1.1.3	Graphen	e Lattice and Electronic Structure	5
		1.1.4	Physical	Properties	6
			1.1.4.1	Electrical transport	6
			1.1.4.2	Other properties	10
		1.1.5	Potentia	l Applicability of Graphene	11
	1.2	Mode	rn Electro	nics and Spintronics	11
		1.2.1	Semicon	ductor Technology and Its Limitation	11
		1.2.2	Spintron	ics: GMR and TMR	14
			1.2.2.1	GMR and TMR	14
			1.2.2.2	Spintronics applications of GMR and	
				TMR	18
			1.2.2.3	Proposal of a spin FET	20
	1.3	Graph	ene Junct	ions	22
		1.3.1	Proposal	ls of Novel Graphene Devices	22
		1.3.2	Graphen	e Magnetoresistive Junctions	23
2	Basi	c Featu	res of Gra	phene	29
			onic Strue	-	29
	2.2	Electr	onic State	es of the π -Band in Graphene	29
		2.2.1		e in Real and Reciprocal Spaces	30
			-	nding Model of Graphene	31
			-	rmions as Low-Lying Excitations	33
	2.3			es of Bilayer Graphene	34

		2.3.1	Gap Opening due to the Electric Field	36
		2.3.2	Low-Energy Effective Model	36
	2.4	Symm	netries in Graphene	38
		2.4.1	Unitary and Anti-Unitary Transformations	38
		2.4.2	(Pseudo) Time Reversal Symmetry and	
			Backward Scattering	38
		2.4.3	Rotational Symmetry and Degeneracy at the K	
			Point	41
		2.4.4	Chiral Symmetry	45
	2.5	Some	Mathematics	45
	2.6	Trans	port Properties	46
	2.7	Bipola	ar Junction	47
		2.7.1	Perfect Transmission in a Monolayer Graphene	
			Junction	48
		2.7.2	5 I ,	50
	2.8		/Graphene Junction	53
	2.9		nal Conductivity	56
	2.10		nteger Quantized Hall Effect	58
			Landau Level in Conventional Electron Systems	58
		2.10.2	2 Semiclassical Approach for the Quantum Hall	
			Effect	59
			3 Landau Level in Graphene	61
			Half-Quantized Hall Conductance in Graphene	61
	2.11		Graphene to Topological Insulators	62
			Massive Dirac Fermions	63
			2 Quantum Valley Hall Effect	63
			3 Quantum Spin Hall Effect	64
		2.11.4	\mathbb{Z}_2 Topological Insulator	65
3	Floc	tronic	Structures of Graphene and Graphene Contacts	69
5	3.1		e- and Bilayer Graphene Sheets	69
	5.1	3.1.1		69
		3.1.2		72
	3.2		nene Nanoribbons	75
	5.2	-	Energy Dispersion and Resonant States	77
			Energy Band Gap	82
		3.2.2		82
		3.2.4		85
		J.2. T	metal oraphene junctions	05

3.3	Magne	88	
3.4	Metal and Insulator Contact with Graphene		
	3.4.1	Simple Model	91
	3.4.2	Realistic Metal Contacts	92
	3.4.3	Graphene on Silicon Carbide	97
	3.4.4	Graphene Contact with Insulator	98
	3.4.5	Hydrogen-Coated Graphene	99
3.5	Ripple	es and Curved Graphene	99
	3.5.1	Ripples, Strain, and Spin–Orbit Interaction	100
	3.5.2	Curved Graphene	101

4	Elec	trical a	nd Spin Transport	109
	4.1	Electr	ical and Spin Transport in Graphene	110
		4.1.1	Conductivity and Mobility	110
		4.1.2	Effects of Disorder	115
		4.1.3	Spin Transport	119
		4.1.4	Hall Effects	124
		4.1.5	Other Transport Properties	126
	4.2	Graph	ene Junctions and Field-Effect Transistors	127
		4.2.1	Nonmagnetic Metal/Graphene/Nonmagnetic	
			Metal Junctions	127
		4.2.2	Field-Effect Transistors	130
		4.2.3	Contact Resistance	133
	4.3	Spin V	Valves and Magnetoresistance	138
		4.3.1	FM/Graphene/FM Junctions	139
		4.3.2	Novel Magnetoresistance Theory	140
		4.3.3	Nonlocal Spin Valve	141
		4.3.4	Two-Terminal Spin Valve	143
	4.4	Novel	Graphene Devices	146
5	Spin	tronics	MR Devices	157

Introduction			
Giant Magnetoresistance			
5.2.1	Magnetic Multilayers	160	
5.2.2	GMR and Exchange Coupling	160	
5.2.3	Mechanism of GMR	165	
	Giant 5.2.1 5.2.2	Introduction Giant Magnetoresistance 5.2.1 Magnetic Multilayers 5.2.2 GMR and Exchange Coupling 5.2.3 Mechanism of GMR	

			5.2.3.1	Spin-dependent resistivity in	
				ferromagnetic metals: Two-current	
				model	165
			5.2.3.2	Spin-dependent resistivity in	
				multilayers	166
			5.2.3.3	Phenomenological theory of GMR	168
			5.2.3.4	Microscopic theory of GMR	169
			5.2.3.5	Effects of spin flip scattering	170
		5.2.4	Applica	tion of GMR: Spin Valve	170
	5.3	Tunne	el Magne	toresistance	172
		5.3.1	Ferrom	agnetic Tunnel Junctions and TMR	172
		5.3.2	A Pheno	omenological Theory of TMR	174
		5.3.3	TMR of	Several FTJs	177
			5.3.3.1	Fe/MgO/Fe junctions	177
			5.3.3.2	TMR in FTJ with half-metals	179
			5.3.3.3	Granular TMR	180
		5.3.4	Ingredi	ents of TMR	181
			5.3.4.1	Role of the transmission coefficient	181
			5.3.4.2	Effects of the Fermi surface	182
			5.3.4.3	Symmetry of the wave function	183
			5.3.4.4	Effect of density of states	183
			5.3.4.5	Effect of interfacial states	183
			5.3.4.6	Effect of electron scattering	184
		5.3.5	Applica	tion of TMR: Magnetoresistive Random	
			Access	Memory	185
	5.4	Curre	nt-Induc	ed Magnetization Switching	186
		5.4.1	Spin Tra	ansfer Torque	186
		5.4.2	Magnet	ization Dynamics and Spin Pumping	189
	5.5	Spin H	FET		191
		5.5.1	Proposa	al of a Spin FET	191
		5.5.2	Conduc	tivity Mismatch	193
		5.5.3	Some E	xperiments of Spin Injection and	
			Detectio	on	195
6	-			raphene Junctions: Realistic Models	203
			duction		204
	6.2	Magnetoresistance of Graphene Junctions: Model			206
	Calculations				

	6.2.1	Artificial Graphene Junctions	206
	6.2.2	Square-Lattice/Graphene/Square-Lattice	
		Junctions	208
		6.2.2.1 Junction structure and model	208
		6.2.2.2 Conductance and momentum-resolved	
		conductance	210
		6.2.2.3 Magnetoresistance	214
	6.2.3	Triangular-Lattice/Graphene/Triangular-	
		Lattice Junctions	215
	6.2.4	Mode-Matching/Mode-Mismatching Model for	
		MR	219
6.3	Effect	s of Disorder	222
	6.3.1	Models and Method of Calculation	223
	6.3.2	Conductance in Nonmagnetic Disordered GNR	
		Junctions	224
	6.3.3	MR in Ferromagnetic Disordered GNR	
		Junctions	228
6.4	Realis	tic Graphene Junctions	231
		Introduction	231
	6.4.2	Model and Method of Calculation	234
	6.4.3	BCC Fe/Graphene/BCC Fe Junctions	238
		6.4.3.1 Calculated results	238
		6.4.3.2 Summary	242
	6.4.4	FCC Ni/Graphene/FCC Ni Junctions	243
		6.4.4.1 Effects of interlayer distance on MR	243
		6.4.4.2 Effects of contact size	244
		6.4.4.3 Effects of doping at contact	246
		6.4.4.4 Material dependence	247
		6.4.4.5 Effects of roughness	248
		Mechanism of MR	249
	6.4.6	Discussions and Conclusions	255

7	Sum	259	
	7.1	New Materials and New Fields of Science	259
	7.2	GMR and TMR in Spintronics	260
	7.3	Graphene in Spintronics	261

Арр	Appendix			
A.1	Condu	uctance Formalism for Numerical Calculation		
	A.1.1	Kubo–Greenwood and Lee–Fisher Formalisms	265	
	A.1.2	Recursive Green's Function Method	267	
A.2	Alterr	native Method to Calculate Conductance and Its		
	Appli	cation	268	
	A.2.1	Model and Formalism	269	
	A.2.2	Calculated Results	272	
		A.2.2.1 Nonmagnetic Electrodes	273	
		A.2.2.2 Ferromagnetic electrodes	274	
		A.2.2.3 Effects of Magnetic Field	279	
		A.2.2.4 MR for Doped Junctions	279	
	A.2.3	Discussion and Summary	280	
A.3	Spin-	Orbit Interaction	281	

Index

283

Preface

In these 30 to 40 years, significant progress has been achieved in solid-state physics and materials science. Not only the discovery of novel materials such as oxide superconductors with high Curie temperature, magnetic multilayers with giant magnetoresistance (GMR), and low-dimensional carbon lattices called fullerenes, nanotubes, and graphene but also the discovery of the quantum version of Hall effects and the invention of the novel scanning microscope, etc., have been made.

Modern electronics based on solid-state silicon transistors has also developed tremendously due to the development of microlithography techniques and contributed to the progress in information-based society. Silicon electronics, however, is known to be confronted with difficulties caused by the downsizing of devices. Enormous scientific and technological research has been performed to overcome the difficulties. Among them, a novel way, the so-called spintronics, which utilized both spin and charge degrees of freedom of electrons, has been developed.

Previously the spin and charge degrees of freedom of electrons have been used independently for magnetism and semiconductor technology, respectively. The discovery of GMR opened the way for spintronics because GMR is a combined phenomenon of the magnetism and transport originated from electrons. The effect of magnetoresistance has been successfully applied in the field of spintronics, and further applications to silicon technology are under investigation. As mentioned, the discovery of novel materials opens up the option for scientists and engineers to use them for spintronics applications.

Graphene is a promising material for technological applications because of its distinguished physical and chemical properties. It is, therefore, our obligation to proceed toward establishment of graphene technology. However, such an attempt is yet unsuccessful in modern electronics as well as in the field of spintronics. To bring about any scientific and technological breakthrough, an overview of the wide aspects of graphene and spintronics would be desirable. Because many excellent review articles and textbooks on each subject have already been published, it is our attempt to provide especially young scientists with an introductory view of graphene magnetoresistive junctions in relation to the present status of the field of spintronics.

The contents of this book are as follows. After a short introduction of graphene and spintronics, we present basic features of graphene in Chapter 2. The electronic structure of graphene, graphene nanoribbons, and graphene contacts are presented in Chapter 3. Transport properties relevant to graphene junctions, graphene field-effect transistors, and spin injection and magnetoresistance will be explained in Chapter 4. To give insight into the spintronics applications of magnetoresistive junctions, properties of GMR and tunnel magnetoresistance (TMR) will be explained in Chapter 5. Subsequently, theoretical results obtained by our group for magnetoresistance in realistic models will be presented in Chapter 6. In the final chapter, a summary and an overview will be given.

The authors thank A. Yamamura, T. Hiraiwa, R. Sato, and T. Kato who were master course students at the Department of Applied Physics, Nagoya University for their excellent research work in their course, as well as Dr. Itoh of Kansai University for providing us with computer program codes and computing facilities. The work was partly supported by next-generation supercomputing projects, NanoScience Program MEXT, Japan; Grants-in-Aids for scientific research in the priority area "Spin Current," MEXT, Japan; and Elements Science and Technology projects, MEXT, Japan

> Jun-ichiro Inoue Ai Yamakage Shuta Honda