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Preface

Synthetic polymers and their materials have been used frequently 
as attractive alternatives to conventional materials for a number 
of applications. Some of the advantages of these materials are 
resistance to corrosion, acids, and fire; higher fatigue strength, 
impact energy, and absorption capacity; longer service life; lower 
life-cycle costs; and non-conductivity. However, most synthetic 
polymer–based materials suffer from a number of drawbacks such 
as non-biodegradability, non-recyclability, and non-environmental 
friendliness. Compared with traditional synthetic polymer–based 
materials, sustainable polymer–based materials offer a number of 
advantages such as low-cost, specific mechanical properties, and 
ease of handling. Furthermore, owing to the increasing environment 
and sustainability concerns, materials industries worldwide are 
undergoing a revolutionary shift to developing environmentally 
sustainable materials. Natural polymers provide renewable 
resources, and applications of the natural polymer–based materials 
can also reduce the waste in the environment owing to their 
biodegradable nature. One of the advantages of these materials is 
that these materials do not disrupt the established steady-state 
equilibrium of the environment.
 Compared with the traditional synthetic polymer–based 
materials, the use of biorenewable polymers for a number of 
applications ranging from biomedical to defense is increasing rapidly. 
Indeed, biorenewable polymer–based materials have been used 
by the people of earlier civilizations to meet their material needs. 
Diversity of materials derived from different natural resources 
such as natural fibers, wood, animal skin, wool, and silk has played 
a greater role in the early civilization. These natural polymer–based 
materials are of high importance even in the modern world as 
their feedstocks are renewable. Furthermore, natural polymer–
based materials can be composted or recycled at the end of their 
life cycle. Different research efforts all around the globe are 
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continuing to improve the existing properties of these polymers. 
Researchers are collectively focusing their efforts to use the inherent 
advantages of sustainable polymers for their targeted applications. 
Scientists in collaborations with industries are extensively 
developing new classes of sustainable materials of renewable 
nature. Different kinds of sustainable materials can be obtained 
from different biorenewable polymers as well as some genetically 
modified organisms. This book is solely focused on sustainable 
polymers and deals with the different structural and chemical 
aspects of these materials. Several critical issues and suggestions 
for future work are comprehensively discussed in this book with 
the hope that the book will provide a deep insight into the state 
of the art of sustainable polymers. We would like to thank the 
publisher for the invaluable help in the organization of the editing 
process. Finally, we would like to thank our parents for their 
continuous encouragement and support.

Vijay Kumar Thakur 
Manju Kumari Thakur




