


Molecular and Cellular Biomechanics

edited by
Bradley E. Layton

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Molecular and Cellular Biomechanics

Copyright © 2015 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4316-83-5 (Hardcover) ISBN 978-981-4613-44-6 (eBook)

Printed in the USA

This book is dedicated to the memory of Prof. Alan Hunt, who taught a wonderful graduate course titled "Cell Mechanics" in the Biomedical Engineering Department at the University of Michigan. Alan's intellect, friendship, and open-mindedness are truly missed.

Contents

Acknow	ledgme	nts	xiii
Preface			XV
1. Intr	oductio	on	1
Brac	iley Layt	on and Kayla Nagle	
1.1	Brief	Overview of Numbers and Scales	1
		Number of Cells on the Planet	_
		and in Organisms	1
	1.1.2	Number of Cell Phenotypes in	
		an Organism	3
	1.1.3	Number of Atoms in a Cell	3
	1.1.4	Number and Organization of	
		Molecules in a Cell	4
	1.1.5	Mechanical Components of a Cell	5
1.2	Histor	ry of Cell Mechanics	10
	1.2.1	Early Experiments on Measuring	
		Tissue Constitutive Properties	10
	1.2.2	ECM Mechanics versus Cell Mechanics	11
	1.2.3	First Experiments and Motivation	
		for Measuring Cell Stiffness	11
1.3	Outlir	ne of the Book	12
2. Me	chanics	of Single Molecules and Single Proteins	15
Alan	Hunt, B	lake Charlebois, and Seth McCubbin	
2.1	Macro	omolecules, Small Molecules, and Machines:	
		Are They Alike? How Do They Differ?	15
		Macroscale vs. Microscale	16
	2.1.2	Macromolecules Behave Like	
		Macroscale Machines	16

	2.2	Thern	nal Energy, Equipartition, and the	
		Boltzi	mann Distribution	18
		2.2.1	Thermal Energy and Thermal Forces	18
		2.2.2	The Equipartition Theorem	21
		2.2.3	The Boltzmann Distribution	24
	2.3	Therr	nal Ratchets: What Are They?	
		A Pra	ctical Definition	27
		2.3.1	Maxwell's Demon	30
	2.4	Detail	led Balance	31
	2.5	Entro	py and Enthalpy	35
	2.6		Nays to Model a Chemomechanical	
			ition: Macromechanical View	
			s Statistical Mechanics View—When	
			ney Apply?	39
		2.6.1	An Alternative View: Statistical	41
	2.7	<i>c</i> 1	Mechanics	41
	2.7	Conci	usions	43
3.	Nucl	leus M	echanics	45
	Kris l	Noel Da	hl and Markus J. Buehler	
	3.1	DNA		45
		3.1.1	DNA Structure	45
		3.1.2	DNA Mechanics	47
		3.1.3	DNA Assembly into Chromatin	49
		3.1.4	Mechanics of the Nuclear Interior	50
	3.2	Lamir	ıs	52
		3.2.1	Lamin Protein Structure	52
		3.2.2	Filament Assembly and Network	
			Properties	53
		3.2.3	Other Nucleoskeletal Proteins	54
		3.2.4	Actin	55
		3.2.5	Nucleoskeleton Mechanics	55
	3.3	Whole	e Nucleus Properties	58

Sameer B. Shah, Joshua Chetta, and Brian G. Bober

99

6.1 Introduction

	6.2	Struct	tural Organization within the Neuron	101
		6.2.1	Microtubules, Kinesin, and Dynein	102
		6.2.2	Actin and Myosin	104
		6.2.3	Neurofilaments	105
		6.2.4	Cytoskeletal Connectivity within	
			the Axon	107
	6.3	Axona	al Transport of the Cytoskeleton	108
		6.3.1	Fast vs. Slow Transport	108
		6.3.2	Microtubule Transport	109
		6.3.3	Actin Transport	111
		6.3.4	Neurofilament Transport	113
		6.3.5	Mechanical Determinants of Transport	114
		6.3.6	Inherent Motor Capabilities	115
		6.3.7	Motor Configurations on a Cargo	116
		6.3.8	Influences of the Cellular Environment	117
	6.4	Neuro	omechanics	118
		6.4.1	Tensile Loading during Normal	
			Axonal Outgrowth	118
		6.4.2	Imposed Tensile Loading	120
		6.4.3	Compressive and Shear Loading	124
	6.5	Summ	nary and Outlook	125
7.	Imp	lication	ns for Disease: Valvular Fibrosis	
	•		yofibroblast	127
	Mark	c C. Blase	er and Craig A. Simmons	
	7.1	Introd	luction	127
		7.1.1	Fibrosis: A Disease Rooted in Mechanics	127
		7.1.2	The Aortic Valve	130
		7.1.3	Aortic Valve Disease	133
	7.2	The M	lyofibroblast	135
		7.2.1	Role in Disease and Repair	135
		7.2.2	Identification and Cellular Characteristics	136
		7.2.3	TGF- eta 1-Mediated Mechanical Control	
			of Myofibroblast Differentiation	137

Acknowledgments

The authors would like to gratefully acknowledge support from the following sources:

- National Science Foundation CMII 07030000 "Multiscale Structure-Function Relationships of Collagen in the Marine Cyanobacterium Trichodesmium erythraeum"
- National Science Foundation IOS 0950374 "LiT: RUI: Mitigation of Dehydration-Induced Nanomechanical Failure in Arabidopsis thaliana"
- USDA 2008-35100-04413 "Does nanoscale cellulose fibril rearrangement in mesophyll and vascular tissues affect survival rates during dehydration in Eragrostis?"
- Keck Foundation "The Keck Institute for Attofluidic Nanotube-Based Probes"
- National Science Foundation: Kate Rodowicz (Allen) NSF Research Fellow

Preface

This book has been written by engineers and physicists working in various fields of biomechanics. Its intended audience includes upper-level undergraduate students, graduate students, or those generally interested in understanding cellular and molecular mechanics on a more fundamental level. It begins with a general introduction to the scales and terms used in the field of cellular and molecular biomechanics, followed by six chapters, each of which focus on various tissues or cellular systems. Each chapter has a few problems or questions to help the reader dig deeper into the material.