Supercritical Fluid Nanotechnology

Advances and Applications in Composites and Hybrid Nanomaterials

> edited by Concepción Domingo Pascale Subra-Paternault

Supercritical Fluid Nanotechnology

Supercritical Fluid Nanotechnology

Advances and Applications in Composites and Hybrid Nanomaterials

> edited by Concepción Domingo Pascale Subra-Paternault

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Supercritical Fluid Nanotechnology: Advances and Applications in Composites and Hybrid Nanomaterials Copyright © 2015 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4613-40-8 (Hardcover) ISBN 978-981-4613-41-5 (eBook)

Printed in the USA

Contents

Prefa	псе			xvii		
1.	Sustai	nable Pr	ocessing and Nanomanufacturing	1		
	Conce	pción Do	omingo			
	1.1 Nanotechnology and Nanoproducts					
	1.2					
	1.3 Green Technology					
	1.4	Supere	critical CO ₂ Fluid Technology	7		
		1.4.1	Physicochemical Characteristics of			
			Supercritical Fluids	7		
		1.4.2	Historical Perspective of scCO ₂			
			Technology	9		
		1.4.3	8	10		
		1.4.4		12		
1.5 Supercritical CO ₂ Applications in Sustainability and Nanoprocessing						
				14		
2	Eunda	montals	of Supercritical Fluids and the Role			
۷.	of Mo		of Supercritical Fidius and the Role	19		
		-	a	15		
		es F. Veg				
	2.1		uction: The Near-Critical Region	0.0		
		of Flui		20		
		2.1.1	1	20		
		2.1.2	8	22		
	2.2	Incom	Near-Critical Region	23		
	2.2		porating Nonclassical Behavior in the	26		
		2.2.1	Critical Region: Crossover Soft-SAFT EOS The SAFT Approach and the Soft-SAFT	20		
		2.2.1	Equation of State	27		
		2.2.2	-	27		
		2.2.2	-	29		
		2.2.3	Thermodynamic Derivative Properties	31		
		2.2.4	Phase Equilibria and Critical Line	51		
		2.2. I	Calculations	32		
			Gaicalations	54		

	2.3	Applica	tion to Pure Fluids	32
		2.3.1	Derivative Properties	35
	2.4	Applica	tion to Mixtures in the Near-Critical	
		Region		36
		2.4.1	The Phase and Critical Behavior of	
			Binary Mixtures	37
	2.5	Summa	ry and Conclusions	39
3.	A Stati	stical Me	chanical Equation of State for	
	Predict	ing Critic	cal Properties of Confined Fluids	43
	Eldred	Chimowi	itz and Pedro López-Aranguren	
	3.1	The Har	niltonian for a Confined Lattice Gas	44
		3.1.1	Mean-Field Treatment: The Confined	
			Lattice Gas	45
		3.1.2	The Critical Point for the Model	47
		3.1.3	The Low <i>p</i> Limit: For Use in Highly	
			Porous Aerogels	48
	3.2		Heterogeneity in the Fluid–Solid	
		Interact		49
	3.3	Model P	Predictions: Pure Fluid	50
		3.3.1	Model Comparison with GCMC	
			Computer Simulations	53
	3.4	Summa	ry and Conclusions	57
4.	Genera	l Descrip	tion of Nonreactive Precipitation	
	Metho	ds		59
	Сопсер	ción Don	ningo	
	4.1	Particle	Formation Processes with	
		Supercr	titical Fluids	60
		4.1.1	Supercritical Fluid as a Solvent	60
		4.1.2	Supercritical Fluid as an Antisolvent	60
		4.1.3	Supercritical Fluid as a Solute	62
	4.2		itical CO ₂ Precipitation Technology	
		Applied	to Nanopharmaceuticals and	
		Biomate	erials	62
		4.2.1	Drug Delivery Systems	64
			Scaffolds in Tissue Engineering	70
	4.3	Conclus	ions and Remarks	73

5.	Dioxi	-	a, Densities, and Viscosities of Carbon thylene Glycol) Mixtures for Particle lications	81		
	Masayuki Iguchi, Yoshiyuki Sato, and					
	Richa	Richard Lee Smith, Jr.				
	5.1	Introdu	action	82		
	5.2	Vapor-	Liquid Equilibria of CO ₂ –PEG Mixtures	84		
		5.2.1	Measurement	84		
		5.2.2	Correlation	89		
	5.3	Solid–I	Solid–Liquid Equilibria of CO ₂ –PEG Mixtures			
	5.4	Densities and Swelling Ratios of CO ₂ –PEG				
		Mixtures				
		5.4.1	Measurement	91		
		5.4.2	Calculation	94		
	5.5	Viscosi	ties of CO ₂ –PEG Mixtures	95		
		5.5.1	Measurement	95		
		5.5.2	Calculation	97		
6.	Meth	ods for Pa	article Production: Antisolvent			
	Techn	niques		103		
	Pasca	le Subra-	Paternault			
	6.1	Introdu	action	104		
	6.2	An Exp	lanation of the Process and			
		Approa		106		
		6.2.1	Antisolvent Effect Related to			
			Solubility Considerations	106		
		6.2.2	The Two Modes: SAS and GAS	109		
	6.3	Applica	ations	113		
		6.3.1	Coprecipitation: Two Species			
			Coprecipitate by Antisolvent	113		
		6.3.2	Precipitation on Slurry: Precipitation			
		0.012	of One Species by Antisolvent in the			
			Presence of Pre-Existing Particles	118		
		6.3.3	Coprecipitation on Slurry:	110		
		01010	Precipitation of Two Species by			
			Antisolvent in the Presence of			
			Pre-Existing Particles	122		
				144		

7.	7. Development of Hybrid Structured Particles Prepared through the PGSS® Process				
	Vaness	a S. S. Gonçalves and Catarina M. M. Duarte			
	7.1	Hybrid Structured Particles as Delivery			
		Systems of Active Compounds	132		
	7.2	The Particles from the Gas-Saturated			
		Solution Technique	133		
	7.3	Production of Hybrid Structured Particles			
	through PGSS				
		7.3.1 Lipid–Lipid System	137		
		7.3.2 Lipid–Polymer System	141		
		7.3.3 Polymer–Polymer System	144		
		7.3.4 Other Applications	147		
	7.4	Characterization of Hybrid Structured			
		Particles	148		
		7.4.1 Size, Morphology, and Surface Charge	149		
		7.4.2 Textural Characterization	151		
		7.4.3 Thermal Behavior	151		
		7.4.4 Composition	152		
8.	Hydrop	ation of Water-Soluble Formulations of bhobic Active Compounds by Emulsion			
	Templa	ate Processes	159		
	0	Martín, Esther de Paz, Facundo Mattea, aría José Cocero			
	8.1	Water-Soluble Formulations of Hydrophobic			
		Active Compounds	160		
	8.2	Emulsion Evaporation and Solvent			
		Displacement Methods	162		
	8.3	Novel Emulsification Techniques	166		
	8.4	Process Intensification by Precipitation from			
		Pressurized Emulsions	168		
	8.5	Supercritical Fluid Processing of Emulsions:			
		Supercritical Extraction of Emulsions and			
		Antisolvent Precipitation from an Emulsion			
	-				
	0.0	Antisolvent Precipitation from an Emulsion Case Study: Precipitation and Encapsulation	170		
	0.0	-	177		
	0.0	Case Study: Precipitation and Encapsulation	-		
	0.0	Case Study: Precipitation and Encapsulation of β -Carotene by Emulsion Techniques	-		

		8.6.2	Formulation by Precipitation from	
			Pressurized Organic Solvent-on- Water Emulsions	184
		8.6.3	Formulation by Supercritical Fluid	104
		0.0.5	Extraction of Emulsions	187
		8.6.4	Comparison of Results Obtained	107
		0.0.4	with Different Techniques	192
	8.7	Conclu	*	192
9	Strated	vies for «	scCO ₂ Technology	201
у.		ción Do		201
	9.1		gy I: Use of scCO ₂ as a Solvent	202
	9.2		gy II: Use of scCO ₂ as an Antisolvent	203
	9.3		gy III: Use of $scCO_2$ as a Solute	203
	9.4		gy IV: Use of $scCO_2$ as a Reagent	204
10.	Innova	tions in	Organic Synthesis in scCO ₂ :	
10.			e Reaction and a Ship-in-a-Bottle	
			the Preparation of Hybrid Materials	209
	Ana M.	Lopez-	Periago, Nerea Murillo-Cremaes,	
	and Co	ncepció	n Domingo	
	10.1	Introd	uction to Chemical Reactions in scCO ₂	210
			Organic Reactions in an $scCO_2$	
			Medium	211
			10.1.1.1 Transition metal-catalyzed	
			reactions	211
			10.1.1.2 Polymerization reactions	212
			10.1.1.3 Enzyme-catalyzed reactions	212
		10.1.2	Reactions Involving CO_2 as a Reactant	213
	10.2	Schiff	Base Synthesis in Supercritical CO ₂	213
	10.3		ip-in-a-Bottle Host–Guest Approach	
		for the	Preparation of Hybrid Materials	217
			Encapsulation of Chromophores	217
		10.3.2	Preparation of 2,4,6-Triphenylpyrylium	
			Encapsulated in Faujasite Y	
			$[(Ph_3Py^+)-Z]$	220
		10.3.3	Preparation of Triphenyltrityl	
			Cations Encapsulated in Faujasite	
			Y [(RPh ₃ C ⁺)-Z]	222
	10.4	Conclu		224

11.	1. Supercritical CO ₂ for the Reactive Precipitation						
	of Calcium Carbonate: Uses and Applications to						
	Indust	ial Proce	ssing	233			
	Concep	ción Don	ningo, Ana M. López, Julio Fraile,				
	-	a Hidalg					
	11.1	$CO_2 Car$	bonation Reaction	234			
	11.2	-	ventional scCO ₂ Coupled to				
			nic Stirring for $CaCO_3$ Precipitation	237			
	11.3		tions of scCO ₂ Accelerated				
		Carbona		239			
			scCO ₂ in the Production of PCC	240			
			$scCO_2$ in situ Precipitation of CaCO ₃				
			into the Pores of Cellulose Paper	245			
			Enhancement of Portland Cement				
			Properties by scCO ₂ Carbonation:				
			Application of Cement Carbonation				
			in Waste Disposal	246			
			Supercritical CO ₂ -Precipitated				
			Calcite in the Capture and Storage of CO ₂	254			
12.	-		sing Using Supercritical Fluid–Based				
		-	r Drug Delivery and Tissue				
	Engine	ering App	plications	273			
	Ana Ri	ta C. Dua	rte, João F. Mano, and Rui L. Reis				
	12.1	Control	led Drug Delivery Systems	274			
		12.1.1	Particle Formation/Encapsulation	276			
		12.1.2	Impregnation	278			
		12.1.3	Molecular Imprinting	281			
		12.1.4	Externally Triggered Delivery Devices	282			
	12.2	Drug De	elivery in Tissue Engineering				
		Applica	tions	284			
	12.3	Conclus	sions	288			
12	An Inte	arated S	upercritical Extraction and				
13.		-	rocess for Production of				
		cterial Sc		297			
			ich, Jasna Ivanovic, and Philip T. Jaeger	237			
	13.1	Introdu		298			
	10.1	muouu	001011	2,0			

	13.2	Superc	ritical Extraction Processes from	
		Natura	l Products	300
	13.3	Superc	ritical Sorption/Impregnation	
		Proces	ses	306
	13.4	Formu	lation of a Scaffold	309
	13.5	Integra	ted Process for Production of	
		Functio	onalized Materials	312
	13.6	Conclu	sions and Remarks	317
14.	-		uids, Porous Polymers and Tissue	
	Engine	ering		325
	Aurelic	Salerno	o and Concepción Domingo	
	14.1	Introdu	action to Biomaterials and Tissue	
		Engine	ering Scaffolds	326
	14.2	Overvi	ew of Porous Scaffold Materials and	
		Fabrica	ation Techniques	328
		14.2.1	Materials	328
		14.2.2	Fabrication Techniques	330
	14.3	Superc	ritical Fluids, Biomaterials Processing,	
		and Po	rous Scaffold Manufacturing	332
	14.4	Porous	Scaffold Fabrication by Means of Gas	
			ng–Based Approaches	334
	14.5		Scaffold Fabrication by Means of	
			Separation and scCO ₂ Drying	
		Approa		341
	14.6	Conclu	sions	344
15.			composites and Nanocomposite	
			pressed CO ₂	351
	David I	L. Tomas	sko and Hrishikesh R. Munj	
	15.1	Introdu	action to Polymer Nanocomposites	352
		15.1.1	Polymer-Nanoparticle Interface	353
		15.1.2	Dispersion of Nanoparticles in a	
			Polymer Matrix	354
		15.1.3	Nanofiller Surface Chemistry	355
	15.2	Fundar	nentals of Polymer Nanocomposite	
		Foams		356
		15.2.1	Supercritical CO ₂ in Nanocomposite	
			Foaming	356
		15.2.2	Effect of Nanoparticles on Foaming	357

		15.2.2.1 Effect of shape/size	357
		15.2.2.2 Effect of distribution	358
		15.2.2.3 Effect of loading	359
		15.2.2.4 Effect of surface chemistry	361
	15.3	Thermodynamic Aspects in Nanocomposite	
		Foams	361
	15.4	CO ₂ -Nanoparticle Interactions	365
	15.5	CO ₂ -Assisted Dispersion of Nanoparticles	
		in Polymer Matrices	365
	15.6	Representative Examples of Nanocomposite	
		Foams	367
		15.6.1 Thermoplastic Nanocomposite Foams	367
		15.6.1.1 Polyethylene	367
		15.6.1.2 Polypropylene	368
		15.6.1.3 Polymethylmethacrylate	369
		15.6.1.4 Polystyrene	370
		15.6.1.5 Polyurathane	371
		15.6.1.6 Poly(caprolactone)	372
		15.6.2 Nanocomposite Foaming Processes	372
		15.6.2.1 Batch foaming	372
		15.6.2.2 Continuous foaming	373
	15.7	Summary	375
16.		g and Impregnation Processes Using	
	Dense-	Phase CO ₂	387
	Сопсер	oción Domingo, Carlos A. García-González,	
	and Pe	dro López-Aranguren	
	16.1	Surface and Interphase Modification	388
	16.2	Supercritical CO ₂ Coating of Nanoparticles	390
		16.2.1 Coating Agents and Methods	390
		16.2.2 Supercritical CO ₂ Polymer Coating	392
		16.2.3 Supercritical CO ₂ Anhydrous Silane	
		Coating	393
	16.3	Impregnation of Porous Matter	402
		16.3.1 Intrinsic Porous Matter	403
		16.3.2 Polymer Bulk Modification by	
		scCO ₂ Impregnation	413
		16.3.2.1 Semicrystalline polymers	413
		16.3.2.2 Amorphous polymers	413

17.	Superc	ercritical Dyeing				
	M. Van	esa Fern	andez Cid	and Geert F. Woerlee		
	17.1	Introdu	uction		434	
		17.1.1	The Conv	entional Textile-Dyeing		
			Process		434	
		17.1.2	Supercrit	ical Dyeing: An Alternative		
			Dyeing P	rocess	436	
		17.1.3	Advantag	ges of Supercritical CO ₂ for		
			Textile D	yeing	436	
	17.2	Challer				
			ritical CO ₂		437	
	17.3			ile Dyeing in	439	
		Supercritical CO ₂				
				ng Process	439	
	17.3.2 Equipment				442	
	17.4	Econor	nical Eval	lation	445	
18.	8. Introduction to the Analytical Characterization of					
10.				Chemometrics to Process		
	Optimization and Data Analysis					
	Javier Saurina				449	
	18.1		. ati an		450	
		Introdu		with a Cturday of Cumpyoniti and	450	
	18.2			r the Study of Supercritical and Materials	151	
					451	
		18.2.1	-	Experiments for Screening	451	
			and Optim		451	
			18.2.1.1	Types of objective functions	455	
			10 2 1 2	in optimization Univariate vs. multivariate	455	
			10.2.1.2	optimization	456	
		1022	Chomom	etric Methods for Data	430	
		10.2.2	Analysis	eti le metilous ior Data	456	
			6	Exploratory methods	457	
				Multivariate calibration	437	
			10.2.2.2	methods	459	
	18.3	Analyti	cal Techn	iques for the	437	
	10.5	-		of Materials	460	
				Characterization	461	
		10.5.1		Solid-state assays	461	
	18.3.1.1 Solid-state assays					

xiv Contents

			18.3.1.2 Wet assays	463		
		18.3.2	Particle Characterization	464		
	18.4	3.4 Examples of Application of Chemometrics				
		to Proc	uct Characterization	466		
		18.4.1	Example 1: Screening of Factors			
			Influencing the Supercritical			
			Silanization of TiO ₂	466		
			18.4.1.1 Multiobjective respons	es 468		
		18.4.2	Example 2: Principal Component			
			Analysis Applied to the Study of T	ГiO ₂		
			Silanization	472		
			18.4.2.1 Comparison of prepare	d		
			products with a comme	ercial		
			material	473		
		18.4.3	Example 3: Multivariate Calibrati	ion		
			Applied to the Study of Drug			
			Impregnation on Absorbing Matr	rices 473		
			18.4.3.1 Study of impregnation			
			processes by PCA	474		
			18.4.3.2 Prediction of drug			
			impregnation by using			
			multivariate calibration	n 475		
	18.5	Conclu	sions	476		
19.	Interac	tion of s	Supercritical Carbon Dioxide with			
			ed by Vibrational Spectroscopy	481		
	Andrev	v V. Ewii	ng and Sergei G. Kazarian			
	19.1	Introdu		482		
	19.2		of High-Pressure and Supercritical	-		
	1712		Polymers	483		
		-	Solubility of CO_2 in Polymers	483		
			CO ₂ -Induced Plasticization of	100		
			Polymers	485		
		19.2.3	Crystallization Induced by CO ₂	486		
			CO ₂ -Induced Extraction and			
			Separation	488		
		19.2.5	Foaming	489		
			Rheology of Polymers	490		
	19.3		onal Spectroscopy	491		
			FTIR Spectroscopy	493		

			19.3.1.1	Sampling methodologies	493
			19.3.1.2	FTIR spectroscopic imaging	494
		19.3.2	Raman S	pectroscopy	495
	19.4	Advanc	ing CO ₂ To	echnologies Using	
		Vibratio	onal Spec	troscopy	496
				of Materials into	
			Polymeri	•	496
			-	c Blending	498
		19.4.3	-	anced Polymer	
				usion and Dissolution Studies	499
			0	ided Polymers	502
			-	orption into Porous Materials	503
		19.4.6		tionalization of Natural	
		a 1	Biomater		505
	19.5	Conclus	sions and	Future Outlook	506
20.	Online	Analvtic	al Metho	ds: Axisymmetric Drop	
		, Analysis			517
	M. Gio	vanna Pa	store Carl	bone and Ernesto Di Maio	
	20.1	Introdu	iction		518
	20.2	Theore	tical Aspe	ects of the ADSA–Pendant	
		Drop M	-		521
	20.3	Descrip	otion of th	e Apparatus and of the	
	Procedure				523
	20.4	Applica	tions of P	endant Drop Method in	
				id Technology	528
Inde	v				541
mac	<i>n</i>				511

Preface

Nanotechnology development is directly linked to long-term energy and environment sustainability. However, many new nanomaterials require new commercial production techniques. In this respect, more and more industries are recognizing compressed and supercritical CO_2 as a powerful green and safe technology for nanomaterial design and manufacturing. Supercritical CO_2 technology has made a transition over the past 25 years from a laboratory curiosity to a largescale commercial reality for materials processing, with very diverse applications, such as pharmaceuticals, nutraceuticals, polymers, and textiles. Moreover, the use of recycled CO_2 in industries instead of more pollutant solvents would mitigate the CO_2 detrimental effect on climate change.

This book illustrates the basis of currently important supercritical CO_2 processing techniques, as well as the main laboratory and industrial applications. The chapters in this book provide tutorial accounts of topical areas to better understand the capacity of this environmentally friendly technology for creating and manipulating nanoscale materials for the next generation of products and technologies.

C. Domingo P. Subra-Patternault