HIGH-RESOLUTION IMAGING

DETECTORS AND APPLICATIONS

Swapan K. Saha

HIGH-RESOLUTION IMAGING

HIGH-RESOLUTION IMAGING

DETECTORS AND APPLICATIONS

Swapan K. Saha

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

High-Resolution Imaging: Detectors and Applications

Copyright © 2015 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4613-27-9 (Hardcover) ISBN 978-981-4613-28-6 (eBook)

Printed in the USA

To my siblings and in memory of my parents

Contents

Pr	reface	?		xvii	
Pr	xxi				
Principal Symbols List of Acronyms					
1	Duca			1	
T	•	Prean	of Radiation	1	
	1.1		Planck's Law	11	
				11	
			Stefan-Boltzmann's Law		
			Effective Temperature of a Star	17	
			Wien's Law	20	
			Color Temperature	21	
			Electromagnetic Spectrum	25	
	1.2	0	Intensity	29	
		1.2.1	Radiometry	30	
		1.2.2	Photometry	35	
		1.2.3	Lambert's Cosine Law	37	
	1.3	Opto-	Electronic System Theory	38	
		1.3.1	Linear System	39	
		1.3.2	Transfer Functions of Optical and		
			Opto-Electronics Systems	43	
	1.4	Image	e Formation	45	
		1.4.1		48	
		1.4.2	Photographic Film	50	
	1.5		s of Atmosphere on the Star Images	51	
			Absorption	52	
			Scattering	55	
			Atmospheric Turbulence	57	
			Resolving Power of a Telescope	63	

		1.5.5	Passive	Approach to Get over Turbulence Effect	67
		1.5.6	Real-Tir	ne Correction Technique	72
			1.5.6.1	Greenwood frequency	73
			1.5.6.2	Adaptive optics system	74
2	Pho	toelect	ric Conce	pt	79
	2.1		electric l	•	79
	2.2	A Brie	ef Accour	it of Semiconductors	84
		2.2.1	Crystal	Structure	85
			2.2.1.1	Crystal lattice	85
			2.2.1.2	Arrangements of space lattice	88
		2.2.2	Crystal	Defects	89
			2.2.2.1	Point defects	90
			2.2.2.2	Line defects	92
			2.2.2.3	Planar (surface) defects	93
			2.2.2.4	Bulk (or volume) defects	94
		2.2.3	Energy	Bands in Semiconductor	95
			2.2.3.1	Bandgap energy	96
			2.2.3.2	Periodic potentials	98
		2.2.4	Electric	al Properties of Semiconductors	101
				Electron-hole pairs	103
			2.2.4.2	Drift current	105
			2.2.4.3	Diffusion current	106
				Mobile charge carrier	107
		2.2.5	Electro	n Distribution in Semiconductors	107
		2.2.6	Semicor	nductor Materials	110
				Intrinsic semiconductor	110
			2.2.6.2	Extrinsic semiconductor	112
		2.2.7	Diode		113
			Transis		120
				ffect Transistor	125
	2.3	0		cuits Technology	128
		2.3.1		tion of ICs	128
				Processing steps	129
				Types of junction	132
				oxide Semiconductor Structure	134
		2.3.3		oxide Semiconductor FET	138
	2.4	Opera	itional Ai	nplifier	141

3	Con	cept of	Laser		145
	3.1	Introd	luction		145
	3.2	Main	Characte	ristics	146
		3.2.1	Coherei	nt Beam	146
			3.2.1.1	Temporal coherence	147
			3.2.1.2	Spatial coherence	148
		3.2.2	Spatial	Filter	151
		3.2.3	Beam E	xpansion	154
		3.2.4	Output	Power	155
	3.3	Princi	ples of E	mission	156
		3.3.1	Induced	l Absorption	156
				neous Emission	157
				ted Emission	160
				ion Inversion	162
		3.3.5	Emissio	on Line-Width	164
			3.3.5.1	Doppler broadening	164
			3.3.5.2	Natural broadening	166
			3.3.5.3	Collisional broadening	167
		3.3.6	Principa	al Components of a Laser	169
		3.3.7	Laser Sy	ystems	171
			3.3.7.1	Gas lasers	171
			3.3.7.2	Dye lasers	173
			3.3.7.3	Optically pumped solid-state	
				lasers	173
		3.3.8	Semicor	nductor Diode Laser	175
				Light-emitting diode	175
			3.3.8.2	Laser diode	176
	3.4		Optics		178
		3.4.1	Princip	le of Operation	178
			3.4.1.1	Numerical aperture	180
			3.4.1.2	Relative core-cladding index	
				difference	180
		3.4.2	Types o	f Fibers	181
		3.4.3	Fiber La	aser	183
		3.4.4	Applica	tions of Optical Fibers	185
			3.4.4.1	Fibers used at telescopes	186
			3.4.4.2	Fibers used for interferometry	187
		3.4.5	Drawba	ick of fibers	189

			3.4.5.1	Absorption loss	189
			3.4.5.2	Radiative loss	191
			3.4.5.3	Dispersion	192
			3.4.5.4	Losses due to miscellaneous sources	195
	3.5	Light	Sources	and Illumination Systems	197
		3.5.1	Lens-Ba	ased Light Source	197
		3.5.2	Laser as	s a Light Source	200
		3.5.3	Laser Ir	nterferometer Gravitational-wave	
			Observa	atory	204
		3.5.4	Laser G	uide Star	206
4			tection P		209
	4.1	Radia	tion Dete	ectors	209
		4.1.1	Figure o		211
				Spectral bandwidth	213
				Responsivity	214
				Quantum efficiency	216
				Detectivity	219
				Frequency response	220
			4.1.1.6	Response time	221
				Dynamic range	223
			4.1.1.8	Dark current	224
				on of Photoevent	225
	4.2	Mech	anism of	Photon Detection	226
		4.2.1	The Hu	man Eye	226
			4.2.1.1	Structure of the eye	227
			4.2.1.2	Operation of the eye	235
			Photog		238
		4.2.3	Micro-F	Photometer	240
	4.3		n Detect		241
		4.3.1	Photon		242
				Internal photon effects	244
				External photon effects	248
				Other photon effects	248
				Wave interaction effects	249
		4.3.2		Requirements of an Ideal Detector	251
				Photocurrent	251
			4.3.2.2	Gain	252

	4.4	Syster	n Analys	is	254
		4.4.1	Principa	al Performance Functions	254
			4.4.1.1	Limiting resolution	254
			4.4.1.2	Non-linearity	255
			4.4.1.3	Spectral response	256
			4.4.1.4	Field-of-view	256
		4.4.2	Limits o	on Radiation Detector Sensitivity	257
	4.5	Noise			258
		4.5.1	Radiatio	on Noise	258
			4.5.1.1	Photon signal fluctuation limit	259
			4.5.1.2	Background photon fluctuation limit	260
		4.5.2	Intrinsi	c Detector Noise	264
			4.5.2.1	Thermal noise	264
				Generation-recombination noise	265
			4.5.2.3	Quantum (Shot) noise	266
			4.5.2.4	Flicker noise $(1/f$ -noise)	269
			4.5.2.5	Dark current noise	271
		4.5.3	-	er Noise	272
		4.5.4	Read-O	ut Noise	273
		4.5.5	Noise F	-	274
			4.5.5.1	Noise accumulation in photoelectric	
				system	277
			4.5.5.2	MTF measurements in a photoelectric	
				system	277
5	Pho	todeted	tors		279
	5.1	Photo	detector	Elements	279
	5.2	Photo	emissive	Devices	280
		5.2.1	Photoer	nissive Surfaces	283
			5.2.1.1	Classical photoemissive surface	283
			5.2.1.2	Negative electron affinity	
				photoemissive surface	286
			5.2.1.3	Types of photocathodes	288
		5.2.2	Photom	ultiplier	289
		5.2.3	Develop	oment of PMT	295
		5.2.4	Astrono	omical Applications of PMTs	296
				Photometer	297
			5.2.4.2	Interferometric applications of PMTs	301

	5.2.5	Use of F	Photoemission Devices for High	
		Energie	25	305
		5.2.5.1	PMTs with scintillators detectors	
			and medical applications	307
		5.2.5.2	Use of PMTs for gamma-ray astronomy	309
	5.2.6	Image I	ntensifiers	310
	5.2.7	Micro-O	Channel Plate	314
5.3	Photo	voltaic D	Devices	320
	5.3.1	P-N Jun	ction Photodiode	320
	5.3.2	P-I-N P	hotodiode	325
	5.3.3	Hetero-	junction Photodiode	329
	5.3.4	Schottk	y Barrier Photodiode	331
	5.3.5	Avalanc	che Photodiode	334
	5.3.6	Phototr	ansistor	339
	5.3.7	Photov	oltaic Devices for High Energies	340
		5.3.7.1	Modern gamma-ray observatories	341
		5.3.7.2	Proportional counters and ASTROSAT	
			LAXPC/ SSM	342
		5.3.7.3	X-ray CCDs and ASTROSAT SXT	344
		5.3.7.4	New-generation semiconductors and	
			ASTROSAT CZTI	345
5.4	Photo	conduct	ive Detectors	347
5.5	Detec	tor Array	/S	350
	5.5.1	Focal P	lane Arrays	351
		5.5.1.1	Quantum well devices	353
		5.5.1.2	Super-lattice structure	355
		5.5.1.3	Focal plane array architecture	356
	5.5.2	Broad (Classifications of Detector Array	358
Cha	rge Tra	nsfer Dev	rices	361
	-	duction		361
6.2	Charg	e-Couple	ed Device	362
	-	-	le of Operation	363
		-	chitectures	367
		6.2.2.1	Linear array CCD	368
			Area array CCD	369
		6.2.2.3	Scanning images	376

	6.2.3	CCD Car	mera System	378
		6.2.3.1	Dewar	378
		6.2.3.2	CCD controller	380
	6.2.4	Read-O	ut Procedure	387
	6.2.5	Charact	eristic Features	390
		6.2.5.1	Charge transfer efficiency	391
		6.2.5.2	Quantum efficiency	392
		6.2.5.3	Dynamic range	395
		6.2.5.4	Gain	395
		6.2.5.5	Responsivity	396
		6.2.5.6	Dark current	397
	6.2.6		tion of CCD	398
			Sources of non-uniformities	398
		6.2.6.2	Flat-field corrections	402
6.3	CMOS	Sensor		403
6.4	Intens	ified CC	D	406
Pho	ton-Cou	unting Sy	stems	411
7.1	Introd	luction		411
7.2	Photo	n-Counti	ing Methods	413
	7.2.1	Detectio	on of Photoelectrons	415
	7.2.2	Necessi	ty of Photon-Counting Systems	417
7.3	Genes	is of Pho	ton-Counting Detectors	419
	7.3.1	Initial E	xperiments	421
	7.3.2	Image F	Photon-Counting Device	422
7.4	PMT-E	Based Ph	oton-Counting System	423
	7.4.1	Digicon		424
	7.4.2	Precisio	on Analog Photon Address	425
	7.4.3	Position	n-Sensing Detector	429
7.5	MCP-E	Based Ph	oton-Counting systems	433
	7.5.1		Anode Cameras	434
		7.5.1.1	Wedge-and-strip anodes detector	434
		7.5.1.2	Resistive-anode position sensing	
			detector	435
	7.5.2	Multi-A	node Micro-Channel Array	436
	7.5.3	Delay-L	ine Anode	438

7

	7.6	Charg	ge Transfer Device–Based Photon-Counting	
		Syster	ms	441
		7.6.1	CP40	441
		7.6.2	CMOS-Based Photon-Counting Detector	447
	7.7	Solid-	State Technologies	449
		7.7.1	Low-Light Level CCD	449
		7.7.2	Superconducting Tunnel Junction	456
		7.7.3	APD-Based Photon-Counting System	457
8	Radi	iation [Detectors for Infrared Wavelengths	461
	8.1	Atmo	spheric Transmission Windows	461
	8.2		red Astronomy	464
		8.2.1	Ground-Based IR Observations	468
		8.2.2	Space-Based IR Observations	471
	8.3	Therr	nal Detectors	472
		8.3.1	Thermal Effects	473
		8.3.2	General Characteristics of Thermal Detector	475
		8.3.3	Bolometers	478
		8.3.4	Thermopiles	481
			8.3.4.1 Golay cells	481
			8.3.4.2 Pyroelectric detectors	482
		8.3.5	Thermal Imagers	483
	8.4	IR De	tectors	485
		8.4.1	Evolution of IR Detectors	486
		8.4.2	Emerging Trends in IR Detectors	487
	8.5	IR Ph	oton Detectors	488
		8.5.1	Quantum Well IR Photoconductor	489
		8.5.2	Strained-Layer Super-Lattice Detectors	496
		8.5.3	Quantum Dot IR Photodetectors	498
		8.5.4	Cooled and Uncooled Detectors	499
	8.6	IR Im	aging Detectors for Astronomy	501
		8.6.1	Indium Antimonide Detectors	504
		8.6.2	HgCdTe-Based Detectors	508
			8.6.2.1 NICMOS	512
			8.6.2.2 PICNIC	514
			8.6.2.3 HST Wide-field camera	515
			8.6.2.4 HAWAII	516
			8.6.2.5 SAPHIRA	521

8.7 He	eter	odyne Interferometry		523
8.2	7.1	Conven	tional Heterodyne Detection	525
		8.7.1.1	Two-frequency single-photon	
			heterodyne detection	525
		8.7.1.2	Two-frequency multi-photon	
			heterodyne detection	526
8.7	7.2	Non-Lii	near Heterodyne Detection	529
Appendix				533
Bibliograp	hy			535
Index				555

Preface

Existence of a quantum limit in light detection has led to a quest, on through the last century (and still going on), for the perfect detector that is asymptotically feasible. In 1901, Planck postulated that radiative transfers would occur by discrete packets of energy named "quanta," following which in 1905, Einstein explained the photoelectric effect. The existence of photons means that for a given collecting area, there exists a physical limit on the minimum light intensity for any observed phenomenon. The perfect detector would be the one that is capable of detecting individual photo-event in the image plane.

The technology of developing detectors has evolved rather fast. The main application of such detectors is in the field of astronomy. Optical telescopes collect the radiation from the faint stellar objects, and the photons received from these objects are feeble. The situation becomes worse in the presence of atmospheric turbulence, particularly in the case of speckle imaging (Labeyrie, 1970) where post-detection data-processing algorithms are required to decipher diffraction-limited spatial Fourier spectrum and image features of such objects. In the early 1970s, the problem was the data processing; computers were not powerful enough for real-time processing and video recorders were expensive. Another application for such detectors is the signal sensing, especially wavefront sensing for adaptive optics (AO) and fringe tracking, which is important for long-baseline optical interferometry.

Research in solid-state electronic imaging detector commenced at the end of the 1960s. Boyle and Smith (1970) introduced the concept of charge-coupled device (CCD). Soon CCDs replaced TV camera tubes for the photon-counting cameras using image intensifiers. However, the possibility to have a fully solid-state photoncounting camera is quite recent. Modern detectors with (i) high sensitivity, (ii) high selectivity and detectivity, (iii) fast response, (iv) high efficiency, (v) low noise, and (vi) high read-out speed play a key role in astronomical applications. A photon-counting system allows the accurate photon centroiding and provides the dynamic range needed for measurements of source characteristics. At present, the large-format CCD and complementary metal oxide semiconductor array mosaics, electron-multiplication CCDs, electron avalanche photodiode arrays, quantum-well infrared photon detectors, etc., are available. However, the requirements of artifact-free photon shot-noise limited images include higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point spread functions, and higher spectral bandwidth.

The interest in using the image information in the form of coordinate sets came from the high-angular-resolution techniques (Saha, 1999, 2002, 2007, 2010; Labevrie et al., 2006, and references therein) for astronomy, which require to take images with exposure times shorter than the atmospheric coherence time (see Section 1.5.3), which is, in general, less than 20 ms depending on the high altitude wind. At this exposure time, the signal-to-noise ratio in each frame is so low that image intensification is usually required. In view of the reasons stated above. I felt the necessity to write a monograph on the modern detector, though a chapter is dedicated on this topic in my first book entitled, Diffraction-Limited Imaging with Large and Moderate Telescopes, 2007, World-Scientific. At the fall of 2009, Dr. Stanford Chong, Director and Publisher, Pan Stanford Publishing Co., invited me, for which I am indebted to, for expanding the talk on this topic, which I delivered at AOMD-2008, India, into a book, which I duly complied with to accept the offer. Studded with tens of figures and footnotes, this book aims to address modern detecting systems, technologies and design, evaluation and calibration, control electronics, scientific applications, and results.

The first chapter deals with the fundamentals of important aspects, such as electromagnetic radiations, optical wavelengths in particular, emanating from the celestial sources and their distortions due to the optical elements and Earth's atmosphere while passing through to the detector. Also, discussed in brief are semiconductor physics and laser and its related phenomena in the second and third chapters, respectively. Chapters 4 through 6 address the photon detection process, photodetectors, and charge transfer devices. The photon-counting devices in the visible wavelength are discussed in the penultimate Chapter 7. The last but not the least, Chapter 8 presents the radiation detectors in infrared wavelengths. My recent interaction with a noted quantum physicist on multi-photon extension of intensity interferometry (Hanbury Brown, 1974) gives me hope that the book would kindle spirits to pursue the fields vet to benefit from the knowledge gained in these chapters. Barring the radio detection technique and intensity interferometry, which were elucidated at length in my second book entitled, Aperture Synthesis: Methods and Applications to Optical Astronomy, 2010, Springer, I have also highlighted the detector systems for high energies in brief in Chapters 5 and 7, since their use in astronomy as well as in medical sciences is noteworthy.

I am indebted to my PhD supervisor, late Prof. A. K. Sen, who initiated me into experimental science at the Institute of Radio Physics and Electronics, University of Calcutta. I express my gratitude to A. Labeyrie, S. K. Sarkar, A. Satya Narayanan, Kavita S. Rao, B. P. Pal, R. Ghosh, S. P. Bagare, S. S. Negi, R. Ramesh, M. S. Sundararajan, R. Srinivasan, and U. S. Kamath for assistance as readers of the draft chapters. Thanks are also due to G. P. Weigelt, R. Osterbart, I. S. McLead, A. Popowicz, S. Pal, Ya-Lin Wu, F. Malbet, P. Nisenson (late), V. Chinnappan, N. K. Rao, L. Close, S. Morel, A. Blazit, E. Pedretti, D. Mourard, D. Ives, K. B. Jinesh, N. Bezawada, A. R. Rao, J. Chatterjee, S. Ghosh, S. Srivastav, G. C. Anupama, D. Ojha, and S. Bhadra for providing the images, spectra, figures, etc., and granting permission for their reproduction. The services rendered by Baba A. Varghese, A. Surya, R. K. Sharma, S. P. Tewari, V. Valsan, R. Mondal, P. Anbazhagan, and S. K. Dhara are greatly acknowledged.

References

Boyle W. S. Smith G. E., 1970, Bell System Tech. J., 49, 587.

Hanbury Brown R., 1974, *The Intensity Interferometry: Its Applications to Astronomy*, Taylor & Francis, London.

Labeyrie A., 1970, Astron. Astrophys., 6, 85.

Labeyrie A., Lipson S. G., Nisenson P., 2006, *An Introduction to Optical Stellar Interferometry*, Cambridge University Press, UK.

Saha S. K., 1999, Bull. Astron. Soc. Ind., 27, 443.

Saha S. K., 2002, Rev. Mod. Phys., 74, 551.

- Saha S. K., 2007, Diffraction-limited Imaging with Large and Moderate Telescopes, World-Scientific, New Jersey.
- Saha S. K., 2010, Aperture Synthesis: Methods and Applications to Optical Astronomy, Springer, New York.

Swapan K. Saha November 2014

Principal Symbols

4	Finatain as officient for an outer source emission
A ₂₁	Einstein coefficient for spontaneous emission
A_d	Effective area of the detector
B (r , <i>t</i>)	Time dependent magnetic field
B_{21}	Einstein coefficient for stimulated emission
$B_{\nu}(T)$	Spectral radiancy
$\mathcal{B}_{n}(\mathbf{r})$	Covariance function
С	Capacitance
С	Coulomb
\mathcal{C}_{n}^{2}	Refractive index structure constant
D	Diameter of the aperture
D^*	Specific detectivity
$D_{\rm e}$	Diffusion coefficient of electrons
$D_{\rm h}$	Diffusion coefficient of holes
D	Electric displacement vector
$\mathcal{D}_{n}(\mathbf{r})$	Refractive index structure function
E _C	Conduction band energy
E _D	Donor level energy
\mathcal{E}_{e}	Irradiance
$\mathcal{E}_{e}(\lambda)$	Spectral irradiance
$E_{\rm F}$	Fermi level energy
$E_{\rm g}$	Bandgap energy
Ei	Intrinsic Fermi level energy
$E_{\rm k}$	Kinetic energy
$\mathcal{E}_{ u}$	Illuminance
erfc	Error function
E(r , <i>t</i>)	Time dependent electric field
$E_{\rm V}$	Valence band energy

xxii Principal Symbols

F	Flux
f	Focal length
$f_{ m e}$	Effective focal length
$f_{ m G}$	Greenwood frequency
$F_{\rm max}$	Maximum frame rate
$F_{\#}$	Aperture ratio
G	Gain
${\mathcal G}$	Heat conductance
Н	Magnetic field
${\cal H}$	Heat capacity
Ĥ	Hamiltonian operator
$\hbar (= h/2\pi)$	Reduced Planck constant
Ι	Intensity of light
i	Current
i _B	Base current
ic	Collector current
i _D	Dark current
i _d	Detector current
I _{DC}	Direct current
i _e	Electron current
i _E	Emitter current
\mathcal{I}_{e}	Radiant intensity
i _{FN}	Flicker noise current
i _h	Hole current
\mathcal{I}_{λ}	Spectral radiant intensity
\mathcal{I}_{v}	Luminous intensity
<i>i</i> n	Dark current noise
$i_{ m ph}$	Photocurrent
i _Q	Shot-noise or quantum noise
i _s	Signal current
i _{sc}	Short-circuit signal current
i(t)	instantaneous photocurrent
<i>i</i> ₀	Reverse saturated current
$\widehat{I}(\mathbf{u})$	Image spectrum
$\widehat{I}(\mathbf{x})$	Intensity distribution at the image plane
J	Electric current density
Jd	Drift current

$J_{\rm diff}$	Diffusion current
j	= 1, 2, 3
Le	Diffusion length of electrons
$L_{\rm h}$	Diffusion length of holes
L_0	Outer scale length
1	Characteristic size of viscous fluid
l _c	Coherence length
l_0	Inner scale length
\mathcal{L}_{e}	Radiance
\mathcal{L}_{v}	Luminance (brightness)
\mathcal{L}_{\star}	Stellar luminosity
М	Multiplication factor
М	Magnification
\mathcal{M}_{e}	Radiant emittance
\mathcal{M}_{e}	Spectral radiant emittance
$\mathcal{M}_{ u}$	Luminous emittance
\mathcal{M}_{q}	Photon emittance
$\mathcal{M}_q(\lambda)$	Spectral photon emittance
$m_{\rm v}$	Apparent visual magnitude
$M_{\rm v}$	Absolute visual magnitude
m^*	Effective mass
M_{\star}	Stellar mass
n	Refractive index
Ν	Integer value
N _e	Magnitude of free electron concentration
N _h	Magnitude of hole concentration
$N_{\rm pe}$	Number of photoelectrons
$N_{ m ph}$	Number of photons
n _{ro}	Read-out noise
n(r , t)	Refractive index of the atmosphere
0(x)	Object illumination
$\widehat{O}(\mathbf{u})$	Object spectrum
Р	Pressure
\mathcal{P}	Probability distribution
р	Momentum
Po	Output optical power
P_{0}	Incident ontical nower

*P*₀ Incident optical power

q	Electron charge
\mathcal{Q}_{e}	Radiant energy
\mathcal{Q}_{λ}	Spectral radiant energy
\mathcal{Q}_{ν}	Luminous energy
$\mathbf{r}(=x, y, z)$	Position vector of a point in space
R	Resistance
\mathcal{R}	Responsivity
$\mathcal{R}(\lambda)$	Spectral responsivity
$\mathcal{R}_{ u}$	Luminous flux responsivity
R _e	Reynolds number
$R_{ m f}$	Entrance face reflectivity (Fresnel reflectivity)
$R_{ m H}$	Rydberg constant
r_0	Fried's parameter
R_{\star}	Stellar radius
Ŝ	Unit vector
$S(\mathbf{x})$	Point spread function
\mathcal{S}_{r}	Strehl's ratio
$\langle \widehat{S}(\mathbf{u}) \rangle$	Transfer function for long-exposure image
$\widehat{S}(\mathbf{u})$	Optical transfer function
$ \widehat{S}(\mathbf{u}) ^2$	Modulus transfer function
sr	Steradian
<i>s</i> (λ)	Spectral response of the detector
t	Time
t(x, y)	Transmittance
Т	Temperature
$\mathbf{u}=(u,v)$	Spatial frequency vector
V	Electrostatic potential
\mathcal{V}	Visibility
Va	Average velocity of a viscous fluid
$V_{ m br}$	Breakdown voltage
v _d	Drift velocity
Vg	Group velocity
V _{oc}	Open-circuit voltage
v _p	Phase velocity
W	Width of depletion region
W	Radiation power
$\mathbf{x}(=x, y)$	Two-dimensional (2-D) position vector
$Z_{j}(\rho, \theta)$	Zernike polynomial of order <i>j</i>

Greek symbols

α	Extinction coefficient
$\alpha_{\rm e}$	Electron-ionization coefficient
$\alpha_{\rm e}$ $\alpha_{\rm h}$	Hole-ionization coefficient
β	Ratio of electron and hole mobilities
,	Zenith angle
γ Γ(τ)	FT of auto-correlation function
δ	Phase difference
$\delta(x)$	Dirac delta function
$\Delta \Delta \nu$	Relative core-cladding index difference
	Spectral width Electrical bandwidth
Δf Δt	
	Integration time
ϵ_0	Permittivity in vacuum
ε	Energy dissipation Quantum efficiency of the detector
$\eta_{ m d}$	Seebeck coefficient
Θ θ	Angular diameter
θ_0	Isoplanatic angle
0	Polar coordinates
(θ, φ)	Wave number
ĸ	Wave vector
κ λ	
	Wavelength
λ ₀	Wavelength in vacuum Permeability in vacuum
μ_0	Electron mobility
μ_{e}	Hole mobility
$\mu_{\rm h}$	
	Frequency
ξ (ξ, η)	2-D position vector Standard deviation
$\langle \sigma \rangle \\ \langle \sigma \rangle^2$	Variance
	Scintillation index
$\sigma_{\rm I}$	Atmospheric coherence time
$ au_0$	Coherence time
$\tau_{\rm c}$	Response time
$ au_{ m d}$	Lifetime of electrons
$ au_{e}$	
$ au_{ m g}$	Group delay

$ au_{ m h}$	Lifetime of holes
$ au_{ m r}$	Total rise time
$ au_{ m RC}$	RC time-constant
$ au_{ m w}$	Delay time due to waveguide dispersion
ϕ_0	Work function
$\phi_{ m m}$	Work function of metal
$\phi_{ m s}$	Work function of semiconductor
Φ_{e}	Radiant power/flux
Φ_{λ}	Spectral radiant flux
Φ_{ν}	Luminous power/flux
$\Phi_n(\boldsymbol{\kappa})$	Power spectral density
χ	Electron affinity
Ψ	Time-dependent wave-function
Psi _B	Potential difference between $E_{\rm F}$ and $E_{\rm i}$
Ψ_{n}	Eigen functions
Ω	Solid angle
ω	Angular frequency
*	Complex operator
*	Convolution operator
\otimes	Correlation
()	Ensemble average
^	Fourier transform operator
∇	Linear vector differential operator
∇^2	Laplacian operator

с	Speed of light in free space	$3 imes 10^8~m.s^{-1}$
c_1	First radiation constant	$2\pi hc^2 = 3.7418 \times 10^4$
		$W\mu m^4.cm^{-2}$
<i>C</i> ₂	Second radiation constant	$hc/k_{\rm B} = 1.4388 \times 10^4 \ \mu{ m m \ K}$
eV	Electron volt	$1.60 imes10^{-19}$ J
h	Planck's constant	$6.626096 imes 10^{-34}$ J.s
Jy	Jansky	$10^{-26}~{ m W}~{ m m}^{-2}~{ m Hz}^{-1}$
$k_{ m B}$	Boltzmann's constant	$1.380662 imes 10^{-23} ext{ J.K}^{-1}$
Km	Luminous efficacy (photopic	683 lm.W ⁻¹
	vision)	
\mathcal{L}_{\odot}	Solar luminosity	$3.839 imes10^{26}\mathrm{W}$
lx	Lux	$lm.m^{-2}$
M_{\odot}	Solar mass	$1.9889 imes10^{30}~ m kg$
q	Elementary charge	$1.6 imes 10^{-19}~{ m C}$
$R_{\rm L}$	Load resistance	
R_{\odot}	Solar radius	$6.96 \times 10^8 \text{ m}$
T_{\odot}	Solar effective temperature	5780 K
ϵ_0	Permittivity constant	$8.8541 imes 10^{-12} \ { m F.m^{-1}}$
μ_0	Permeability constant	$1.26 imes 10^{-6} \ { m H.m^{-1}}$
σ	Stefan–Boltzmann's constant	$5.67 imes 10^{-8} \ \text{W} \ \text{m}^{-2} \ \text{K}^{-4}$

List of Acronyms

AC	Alternating current
ACT	Atmospheric Cerenkov Telescope
A/D	Analog-to-digital
AGN	Active galactic nuclei
AMBER	Astronomical Multiple BEam Recombiner
AO	Adaptive optics
APD	Avalanche photodiode
ASM	Adaptive secondary mirror
ASTROSAT	ASTROnomy SATellite
AT	Auxiliary Telescope
AU	Astronomical unit
BID	Blind iterative deconvolution
BJT	Bipolar junction transistor
BLIP	Background-limited performance
CCD	Charge coupled device
cd	Candela
CDS	Correlated double sampling
CHARA	Center for High Angular Resolution Astronomy
CIC	Clock-induced charge
CMOS	Complementary metal oxide semiconductor
CP40	Comptage de photon 40 mm
CPNG	Comptage de photon nouvelle gènèration
CPU	Central processing unit
COAST	Cambridge Optical Aperture Synthesis Telescope
CRT	Cathode ray tube
CS	Curvature sensor
CTE	Charge transfer efficiency
CTF	Contrast transfer function
CZT	Cadmium zinc telluride

xxx List of Acronyms

CZTI	Cadmium zinc telluride imager
dB	Decibel
DC	Direct current
DM	Deformable mirror
DSP	Digital signal processor
EELT	European Extremely Large Telescope
EMCCD	Electron multiplying CCD
EMF	Electromotive force
ESA	European Space Agency
ESO	European Southern Observatory
FET	Field-effect transistor
FLUOR	Fiber-Linked Unit for Optical Recombination
FOV	Field-of-view
FPA	Focal plane array
FPGA	Field programmable gate array
FPS	Frames per second
FT	Fourier transform
FUSE	Far-Ultraviolet Spectroscopic Explorer
FWHM	Full width at half maximum
GALEX	Galaxy Evolution Explorer
G-APD	Geiger-mode APD
GI2T	Grand Interféromètre à deux Télescopes
GR	Generation-recombination
GRAVITY	General relativity analysis via VLT interferometry
HAGAR	High Altitude Gamma ray telescope ARray
HR	Hertzsprung-Russell
HAWAII	HgCdTe Astronomical Wide Area Infrared Imager
НСТ	Himalayan Chandra Telescope
HST	Hubble Space Telescope
Hz	Hertz
IAO	Indian Astronomical Observatory
IC	Integrated circuit
ICCD	Intensified CCD
IF	Intermediate frequency
IO	Integrated optics
IONIC	Integrated optics near-IR combiner
ΙΟΤΑ	Infrared Optical Telescope Array

IPCS	Image Photon-Counting System
IR	Infrared
IRAF	Image Reduction and Analysis Facility
IRAS	InfraRed Astronomical Satellite
IRTS	InfraRed Telescope in Space
ISI	Infrared Spatial Interferometer
ISM	Interstellar medium
ISO	Infrared Space Observatory
I2T	Interféromètre à deux Télescopes
ITF	Intensity transfer function
kV	Kilovolt
Laser	Light amplification by stimulated emission of radiation
LBOI	Long-baseline optical interferometry
LBT	Large Binocular Telescope
LBV	Luminous blue variable
LCD	Liquid crystal display
LED	Light-emitting diode
LGS	Laser guide star
LHS	Left hand side
LIGO	Laser Interferometer Gravitational-Wave Observatory
LSF	Line spread function
LO	Local oscillator
L3CCD	Low light level CCD
LWIR	Long-wave infrared
ly	Light year
mA	Milli-ampere
MAMA	Multi Anode Micro-channel Array
mas	Milliarcseconds
Maser	Microwave amplification by stimulated emission of
	radiation
MBE	Molecular beam epitexy
MCP	Micro-channel plate
МСТ	Mercury cadmium telluride
MHz	Megahertz
MIRC	Michigan Infra-Red Combiner
MMDM	Micro-machined DM
MMF	Magnetomotive force
MO	Microscope objective

xxxii List of Acronyms

MOS	Metal-oxide semiconductor
MOSFET	Metal-oxide semiconductor FET
MOSFIRE	Multi-Object Spectrometer for InfraRed Exploration
MMT	Multi Mirror Telescope
MRI	Magnetic resonance imaging
MSGIS	Mammary Gland Specific Gamma Imaging System
MTF	Modulation transfer function
MWIR	Mid-wave infrared
NA	Numerical aperture
NASA	National Aeronautics and Space Administration
NEA	Negative electron affinity
NEAT	Nearby Earth Astrometric Telescope
NEAT	Minimum detectable temperature difference
NEP	Noise equivalent power
NETD	Noise equivalent temperature difference
NICMOS	Near Infrared Camera and Multi-Object Spectrometer
NIRSPEC	Near Infrared echelle Spectrometer
nm	Nanometer
ОСТ	Optical coherence tomography
Op-Amp	Operational amplifier
OPD	Optical path difference
OTF	Optical transfer function
PAPA	Precision Analog Photon Address
PAVO	Precision Astronomical Visible Observations
рс	Parsec
PC	Photoconductive
PDS	Photometric data system
PE	Photoemissive
PEM	Photoelectromagnetic
PHD	Pulse height distribution
pixel	PICture ELement
PMT	Photomultiplier tube
POSS	Palomar Observatory Sky Survey
PSD	Position-sensing device
PSF	Point spread function
PSPMT	Position sensitive photomultiplier technology
PTF	Phase transfer function
PV	Photovoltaic
-	

PZT	Piezo-electric transducer
QE	Quantum efficiency
QDIP	Quantum dot IR photodetector
QWIP	Quantum well IR photodetector
RHS	Right hand side
RMS	Root-mean-square
ROIC	Read-out integrated circuit
SAO	Special Astrophysical Observatory
SH	Shack–Hartmann
SL	Super-lattice
SLS	Strained layer super-lattice
S/N	Signal-to-noise
sr	Steradian
STJ	Superconducting tunnel junction
SUSI	Sydney University Stellar Interferometer
SWIR	Short-wave infrared
SXT	Soft X-ray Telescope
TC	Triple-correlation
TDI	Time-delay and integration
TMT	Thirty Meter Telescope
TSM	Tomographic speckle imaging
TV	Television
UT	Unit Telescope
UV	Ultra-violet
UVIT	Ultra-Violet Imaging Telescope
VBO	Vainu Bappu Observatory
VBT	Vainu Bappu Telescope
VEGA	Visible spEctroGraph and polArimeter
VINCI	VLT INterferometer Commissioning Instrument
VLTI	Very Large Telescope Interferometer
WFS	Wavefront sensor