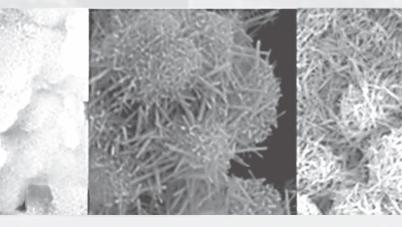

edited by Junhui He



Nanomaterials in Energy and Environmental Applications

Nanomaterials in Energy and Environmental Applications

Nanomaterials in Energy and Environmental Applications

edited by **Junhui He**

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Nanomaterials in Energy and Environmental Applications

Copyright © 2016 by Pan Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4463-78-2 (Hardcover) ISBN 978-981-4463-79-9 (eBook)

Printed in the USA

Contents

1.			-	for Solar Energy Applications	1
	Lin Ya	io and Ju			
	1.1	Introd	uction		1
	1.2		-	ects of Antireflection and	
			eaning		3
		1.2.1		of Antireflection	3
				Basic concept of antireflection	3
			1.2.1.2	Strategies to achieve	
				antireflection	5
		1.2.2	-	of Self-Cleaning	7
			1.2.2.1	Special wettability induced	
				self-cleaning	7
			1.2.2.2	Photocatalysis-induced	
				self-cleaning	1(
	1.3			egies and Methods	13
		1.3.1		on of Antireflective Surfaces	13
			1.3.1.1	Materials perspective for	
				antireflectivity	13
				Bottom-up approach	17
				Top-down fabrication	24
		1.3.2		on of Self-Cleaning Surfaces	28
			1.3.2.1	Fabrication of	
				superhydrophilic surfaces	28
			1.3.2.2	Fabrication of	
				superhydrophobic surfaces	32
		1.3.3		bstrates for Antireflective	
				Cleaning Coatings	35
				Polymer	35
				Metal foil	38
	1.4	-		eflective Self-Cleaning	
			-	er Multifunctional Coatings	40
		1.4.1	-	in Antireflective	
			Self-Clea	ning Coatings	40

vi Contents

		1.4.2	Mechanical Integrity (Durability and	
			Adhesion) of Coatings	46
		1.4.3	Smart Coatings	49
			1.4.3.1 Self-healing coatings	49
			1.4.3.2 Antimicrobial coatings	53
			1.4.3.3 Superamphiphobic coatings	54
	1.5	Applic	ations	58
	1.6	Conclu	ision and Outlook	61
2.	Functio	onalizat	ion of Polyelectrolyte Multilayers	
	via Co	unterio	ns	89
	Xin Zho	ang and	Zhaohui Su	
	2.1	Introd	uction	89
	2.2	Counte	erions in Polyelectrolyte Multilayers	92
	2.3	Surfac	e Wettability Modulation	98
		2.3.1	Surfaces with Tunable Wettability	99
		2.3.2	Superhydrophobic and	
			Superhydrophilic Surfaces	102
		2.3.3	Dual Superoleophobic Surfaces	102
		2.3.4	5	104
		2.3.5	Sticky Superhydrophobic Surfaces	106
	2.4		upported Metal Nanoparticles	107
		2.4.1	Monometallic Nanoparticles	108
		2.4.2	Core-Shell Nanoparticles	111
		2.4.3	Hollow Nanoparticles	113
	2.5	Conclu	iding Remark	116
3.	Glass-E	Based Pi	roton Exchange Membranes for	
	Fuel Ce	ell Appli	cations	121
	Haibin	Li, Qiar	ng Xie, and Xiaojing Chen	
	3.1	Introd	uction	121
	3.2	Proton	n-Conducting Glasses Synthesized	
		via the	e Hydrothermally Assisted Sol-Gel	
		Appro	ach	123
		3.2.1	High Proton-Conducting Monolithic	
			Phosphosilicate Glass Membranes	123
			3.2.1.1 Preparation of PSMs	123
			3.2.1.2 Characterization, analysis,	
			and discussion of PSMs	123

	3.2.2	Fast Prot	con-Conducting Glass	
		Membra	ne Based on Porous	
		Phospho	silicate and	
		Perfluor	osulfonic Acid Polymer	131
			Preparation of membranes	131
			Characterization, analysis,	
			and discussion of NPS	
			membranes	132
3.3	Flexib	le Proton-(Conducting	
			ite Glass-Based	
	Compo	osite Mem	branes	143
	3.3.1	Preparat	ion of NPS/SPEEK Membrane	144
	3.3.2	Characte	rization, Analysis, and	
		Discussio	on	146
		3.3.2.1	Appearance and chemical	
			structure of the NPS/SPEEK	
			composite membranes	146
		3.3.2.2	Morphology and pore	
			structure of the NPS/SPEEK	
			composite membranes	148
		3.3.2.3	Proton-conducting	
			properties, water uptake,	
			and swelling ratio	150
			H_2/O_2 fuel cell testing	154
3.4			Conducting	
			te-Free Glass-Based	
	-	osite Mem		155
	3.4.1	-	ion of SiO ₂ -P ₂ O ₅ /SPEEK	
			te Membranes	156
	3.4.2		rization, Analysis, and	
			on of the Composite	
		Membra		157
		3.4.2.1	Structure of the	
			SiO ₂ -P ₂ O ₅ /SPEEK	
			composite membranes	157
		3.4.2.2	Thermal and mechanical	
			properties of the	
			SiO ₂ -P ₂ O ₅ /SPEEK	
			composite membranes	161

		3.4.2.3	Proton-conducting	
			properties, water uptake,	
			and swelling ratios of the	
			SiO ₂ -P ₂ O ₅ /SPEEK	
			composite membranes	163
		3.4.2.4	H_2/O_2 single fuel cell testing	165
3.5	Anhyd	rous Proto	on-Conducting Glass	
	Memb	ranes Dop	ed with Ionic Liquid for	
	Interm	nediate-Tei	mperature Fuel Cells	167
	3.5.1	Preparat	ion of [Dema][TfO]/SiO ₂	
		Hybrid G	lass Membranes	168
		3.5.1.1	Preparation of [dema]	
			[TfO]ionic liquid	168
		3.5.1.2	Preparation of [dema]	
			[TfO]/SiO ₂ glass membranes	169
	3.5.2	Characte	rization, Analysis, and	
		Discussio	-	169
		3.5.2.1	Characterization of	
			[dema][TfO]ionic liquid	169
		3.5.2.2	Morphology and structure	
			of the [dema][TfO]/SiO ₂	
			glass membranes	170
		3.5.2.3	FTIR analysis of the	
			[dema][TfO]/SiO ₂ glass	
			membranes	171
		3.5.2.4	Ionic conductivity of the	
			[dema][TfO]/SiO ₂ glass	
			membranes	172
3.6	Perfor	mance of I	Fuel Cells (FCs) with Novel	
			ng Glass Membrane or	
	Compo	osite Mem	brane	175
	3.6.1	Improve	d Performance of Fuel	
		Cell with	Proton-conducting Glass	
		Membra	ne	175
		3.6.1.1	Preparation	176
			Characterization, analysis,	
			and discussion	178
	3.6.2	Performa	ance of a Direct	
		Methano	l Fuel Cell Using	
			Proton-Conducting	
			sed Composite	
		Membra	ne	183

			3.6.2.1	Preparation of the	
				NPS/SPEEK composite membrane	184
			2677	Measurement of methanol	104
			3.0.2.2	permeability	185
			3673	Preparation and	105
			5.0.2.5	characterization of DMFC	185
			3624	Characterization, analysis,	105
			5.0.2.1	and discussion	186
	3.7	Conclu	usion and (192
4	Silicon	Nanow	iro Arrove:	Fabrication, Properties	
4.			plications	rabilitation, rioperties	197
		•	Junhui He		157
	0	-			107
	4.1		uction		197
	4.2			cess and Formation	198
	12			NW Arrays	
	4.3	4.3.1	rties of Sil		200
		4.3.1	-	Properties: Improved lection and Broadband	
					200
		4.3.2	Absorpti	l Properties: Enhanced	200
		4.3.2		Collection Efficiency	203
	4.4	Enorm		ions of SiNW Arrays	203
	7.7	4.4.1	Solar Cel	0	205
		7.7.1		Solar cells based on radial	205
				p-n junction SiNW arrays	206
			4412	Solar cells based on	200
			1. 1. 1. 2	graphene film/SiNW array	
				Schottky junction	211
		4.4.2	Photoele	ectrochemical Solar Cells	212
		4.4.3		alytic Water Splitting	214
	4.5	Conclu	isions and		221
-	Decitor	na Daalt		nihilation Studies of	
5.					227
			wironmen	t-Related Nanomaterials	221
		ori Sato			0.0-
	5.1	Introd	uction		227

x Contents

	5.2	Positron-Positronium Annihilation				
		Spectr	oscopy	229		
		5.2.1	Positron and Positronium in Materials	229		
		5.2.2	Positron-Positronium Lifetime			
			Spectroscopy	231		
		5.2.3	Coincident Doppler Broadening (CDB)			
			Spectroscopy	231		
		5.2.4	Positron-Age-Momentum Correlation			
			(AMOC) Spectroscopy	233		
		5.2.5	Positron Diffusion Experiment	237		
	5.3	Applic	ation of Positron-Positronium			
		Annihi	lation Spectroscopy to Energy-			
		and En	vironment-Related Nanomaterials	238		
		5.3.1	Mechanism of Bi Precipitation in			
			Environmentally Friendly Sn-Bi			
			Eutectic System	238		
		5.3.2	Densification Dynamics of			
			Gadolinium-Doped Ceria Upon			
			Sintering	245		
		5.3.3	Formation Mechanism of Biogenic			
			Silica Quartz in the Steady-State			
			Environment	252		
		5.3.4	Elemental Migration in Geological			
			Environment	261		
	5.4	Conclu	ision	267		
6	Granhe	no·Λ N	ew Star Nanomaterial in Energy			
0.	-		ent Applications	273		
			unhui He	2/3		
	6.1	Introd		272		
	6.1 6.2		rations of Graphene-Based Materials	273 275		
	0.2	6.2.1	Graphene	275		
		6.2.2	Graphene-Based Thin Films	273		
		6.2.3	Graphene-Based Composites	278		
	6.3		ations of Graphene-Based Materials	200		
	0.5		rgy and Environment-Related Systems	281		
		6.3.1	Solar Cells	281		
		0.5.1	6.3.1.1 Thin film solar cells	282		
			olorititi i i i i i i i i i i i i i i i i i	202		

		6.3.1.2 Dye sensitized solar cells	286
		6.3.1.3 Heterojunction solar cells	288
		6.3.2 Supercapacitors	289
		6.3.3 Photo-Catalysts for Reduction of	
		CO ₂ and Degradation of Organic	
		Pollutants	293
	6.4	Conclusion and Outlook	294
7.		t Advances in Synthesis and Applications	
	of Met	al-Added Carbon Nanotubes and Graphenes	307
	K. P. Ar	nnamalai and Yousheng Tao	
	7.1	Introduction	307
	7.2	Synthesis of Metal-Added Carbon	
		Nanotubes and Graphenes	309
		7.2.1 Metal-Added Carbon Nanotubes	309
		7.2.2 Metal-Added Graphene	313
	7.3	Applications of Metal-Added Carbon	
		Nanotubes and Graphenes	316
		7.3.1 Hydrogen Adsorption	316
		7.3.2 Electrochemical Energy Storage	319
		7.3.2.1 Applications in Li-ion	
		battery	319
		7.3.2.2 Applications in	
		Supercapacitors	322
		7.3.3 Catalysis for Flue Gas	323
		7.3.4 Other Applications	325
	7.4	Conclusion and Outlook	325
8.		of Reduced Graphene Oxide in Improving	
		catalytic Hydrogen Generation Performance	
	over N	1etal Sulphide Nanocomposites	331
	Jian Rı	u Gong	
	8.1	Introduction	331
	8.2	RGO/Metal Sulphides for Photocatalytic	
		Hydrogen Generation	334
		8.2.1 RGO/CdS Nanocomposites	334
		8.2.2 RGO-Zn _x Cd _{1-x} S Nanocomposites	344
	8.3	Perspectives and Challenges	358

Micro/Nanostructured Materials and Their Structurally				369	
Enhanced Performances for Environment					
Xianbiao Wang, Weiping Cai, and Guozhong Wang					
9.1	Introd	uction		369	
9.2	of Novel				
	Micro/	/Nanostru	ctured Materials	370	
	9.2.1	Solvothe	rmal/Hydrothermal Method	371	
		9.2.1.1			
				371	
		9.2.1.2			
				376	
		9.2.1.3			
			,		
			-	379	
	9.2.2	-		382	
		9.2.2.1	-		
			_	383	
		9.2.2.2			
			-	386	
		9.2.2.3	_ ,		
		0004		388	
		9.2.2.4		200	
	0.0.0		-	390	
0.0		-	•	392	
9.3					
	•			395	
	9.3.1	6	,	395	
	022			395 398	
0.4				390	
9.4				399	
	-			399	
	9.4.1	,		399	
	912			399	
	7.4.2		•	402	
	943			402	
				705	
	944	Removal	of Hydrophobic Organic		
	9.4.4	Removal Pollutant	of Hydrophobic Organic	406	
	Enhand <i>Xianbid</i> 9.1	Enhanced Perf Xianbiao Wang 9.1 Introd 9.2 Mass F Microy 9.2.1 9.2.2 9.2.2 9.3 Structur Proper 9.3.1 9.3.2 9.4 Structur Adsory 9.4.2 9.4.3	Enhanced Performances Xianbiao Wang, Weiping 9.1 Introduction 9.2 Mass Production 9.2.1 Solvother 9.2.1 Solvother 9.2.1.2 9.2.1.2 9.2.1.3 9.2.2.4 9.2.2.3 9.2.2.4 9.3.1 Honeyco Nanostru 9.4.1 Micro/Na ZnO Platu 9.4.3 Removal Pollutant	Enhanced Performances for EnvironmentXianbiao Wang, Weiping Cai, and Guozhong Wang9.1Introduction9.2Mass Production of NovelMicro/Nanostructured Materials9.2.1Solvothermal/Hydrothermal Method9.2.1Solvothermal/Hydrothermal Method9.2.1Novel micro/ nanostructured ZnO9.2.1.2Micro/nanostructured porous Fe ₃ O ₄ nanofibers9.2.1.3Tremella-like micro/ nanostructured Fe ₃ S ₄ /C composites9.2.2Template-Etching Strategy9.2.2.1Magnesium silicate hollow microspheres9.2.2.2Copper silicate hollow microspheres9.2.2.3Hierarchical SiO ₂ @γ-AlOOH microspheres9.2.3Electrospinning Method9.3Structurally Enhanced Photocatalystic Properties9.3.1Honeycomb-Like Micro/ Nanostructured ZnO9.3.2Nobel Metal/ZnO Hollow Nanospheres9.4.1Micro/Nanostructured Porous ZnO Plates9.4.2Removal of Organic Cationic Pollutants9.4.3Removal of Anionic Pollutants	

10.	Utiliza	tion of Biological Polysaccharides as			
	Eco-Friendly Structural Materials				
	Mineo Hashizume and Kazutoshi lijima				
	10.1 Introduction				
	10.2	Classification of Polysaccharides	414		
		10.2.1 Structural Polysaccharides	414		
		10.2.2 Reserve Polysaccharides	414		
		10.2.3 Other Polysaccharides	415		
	10.3	Polysaccharides as Non-Structural Materials	416		
		10.3.1 Industrial Applications	416		
		10.3.2 Biomedical and Biochemical			
		Applications	416		
	10.4	Structural Materials Made of Structural			
		Polysaccharides	418		
		10.4.1 Cellulose and Its Derivatives	419		
		10.4.2 Chitin and Chitosan	420		
	10.5	Structural Materials Made of Non-Structural			
		Polysaccharides	421		
		10.5.1 Bulk Materials and Hydrogels	421		
	10.5	10.5.2 Films, Coatings, and Fibers	422		
	10.6	Conclusion	424		
11.	Catalys	sts for Indoor Formaldehyde Control	429		
	Hua Ti	an and Junhui He			
	11.1	Introduction	429		
	11.2	Photocatalysts	430		
	11.3	Transition Metal Oxide Catalysts	434		
		11.3.1 Ceria Oxide	435		
		11.3.2 Manganese Oxide	435		
		11.3.2.1 Brief introduction to			
		manganese oxide	435		
		11.3.2.2 Effects of nanostructure,			
		surface area, and morphology	437		
		11.3.2.3 Supported manganese oxide	442		
	11.4	Supported Noble Metal Catalysts	444		
		11.4.1 Noble Metal Catalysts	444		
		11.4.2 Effect of support nature	446		
		11.4.3 Effect of Operating Parameters of			
		Formaldehyde Oxidation	450		

		11.4.4 Reaction Mechanism	453
	11.5	Conclusion and Outlook	455
12.	Nanos	tructured Copper Oxide for Sensing Hydrogen	
	Cyanic	de Gas	461
	Mingq	ing Yang and Junhui He	
	12.1	Introduction	461
	12.2	Nanostructures of CuO	464
	12.3	Sensing Properties of CuO-Functionalized	
		QCM Sensors	468
	12.4	Sensing Mechanism of CuO-Functionalized	
		QCM Sensors	472
	12.5	Conclusion and Outlook	474
13.	Nanor	naterials and Health	481
	Wenju	n Ding and Jieting Wang	
	13.1	Introduction	481
	13.2	Nanomaterials	482
		13.2.1 Carbon-Based Nanomaterials	482
		13.2.1.1 Fullerenes (C_{60})	482
		13.2.1.2 Carbon nanotubes	
		(SWNTs and MWNTs)	486
		13.2.2 Metal Oxide Nanoparticles	492
		13.2.2.1 Zinc oxide nanoparticles	
		(ZnO NPs)	492
		13.2.2.2 Titanium nanoparticles	
		(TiO ₂ NPs)	507
	13.3	Conclusion and Outlook	511
Index	ć		523

Preface

Nanoscience and nanotechnology are interdisciplinary fields that bring together physicists, chemists, materials scientists, biochemists, and engineers to meet current and potential future challenges that humankind faces, including searching for renewable energies for sustainable development and new technologies for carbon capture and environmental protection. Among the current subjects in nanoscience and nanotechnology, nanomaterials are developing fast and explosively and attract a huge amount of attention. They have recently shown emerging applications and continue to show promising potentials in technologies such as solar cells, fuel cells, secondary batteries, supercapacitors, air and water purification, and removal of both domestic and outdoor air pollutants. The application of nanomaterials has also drawn attention to their effects on human health. This book invited experts in the fields of nanomaterials, energy, and environmental science and assembled 13 reviews that discuss the design and fabrication of nanostructured materials and their energy and environmental applications.

This is the first book that summarizes the very recent efforts through nanoscience and technology towards meeting the pressing energy and environmental challenges that human beings are facing. It also points out future directions of nanomaterial development and encourages future efforts, especially by the younger generation.

Finally, I would like to take this opportunity to acknowledge all the authors who had spent their precious time in preparing their great contributions to the book. I would also like to thank Dr. Mingqing Yang, who contributed a lot to the communication with the authors and preparation and publication of the book. I am very grateful to Pan Stanford Publishing for providing me an opportunity to publish this book. I hope that the readers will find the contents both useful and enjoyable.

> Junhui He Beijing June 2016