

edited by Ajay Kumar Mishra

Nanocomposites in Wastewater Treatment

Nanocomposites in Wastewater Treatment

Nanocomposites in Wastewater Treatment

edited by Ajay Kumar Mishra

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Nanocomposites in Wastewater Treatment

Copyright © 2015 by Pan Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4463-54-6 (Hardcover) ISBN 978-981-4463-55-3 (eBook)

Printed in the USA

Contents

асе			xiii	
1. Chitosan-Based Polymer Nanocomposites for Heavy Metal Removal			1	
Malathi Sampath, Cross Guevara Kiruba Daniel, Vaishnavi Sureshkumar, Muthusamy Sivakumar,				
and Sengottuvelan Balasubramanian				
1.1 Introduction				
1.2	Why C	hitosan?	3	
1.3	Chitos	an-Based Polymer Nanocomposites	4	
	1.3.1	Chitosan Clay Nanocomposite	4	
	1.3.2	Chitosan-Nanoparticle Composite	4	
1.4		-	10	
1.5	Conclu	iding Remarks and Future Trends	14	
Gum-F	olysacc	haride-Based Nanocomposites for		
the Treatment of Industrial Effluents			23	
Hemant Mittal, Balbir Singh Kaith,				
Ajay Kumar Mishra, and Shivani Bhardwaj Mishra				
2.1	Introd	uction	24	
2.1	Gum P	olysaccharides	25	
	2.1.1	Gum Arabic	26	
	2.1.2	Gum Karaya	26	
	2.1.3	Gum Tragacanth	27	
	2.1.4	Gum Xanthan	28	
	2.1.5	Gum Gellan	29	
	2.1.6	Guar gum	30	
	2.1.7	Locust bean gum	31	
	2.1.7	Gum Ghatti	32	
2.2	Stimul	i-Responsive Nanocomposites	33	
	2.2.1	Temperature-Responsive		
		Nanocomposites	33	
	2.2.2	pH-Responsive Nanocomposites	35	
	Heavy Malati Vaishn and Se 1.1 1.2 1.3 1.4 1.5 Gum-F the Tre Ajay K 2.1 2.1	Chitosan-Base Heavy Metal R Malathi Samp Vaishnavi Sure and Sengottuv 1.1 Introd 1.2 Why C 1.3 Chitos 1.3.1 1.3.2 1.4 Mecha 1.5 Conclu Gum-Polysacc the Treatment Hemant Mitta Ajay Kumar M 2.1 Introd 2.1 Gum P 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.2 Stimul 2.2.1	Chitosan-Based Polymer Nanocomposites for Heavy Wetal Removal Malathi Sampath, Cross Guevara Kiruba Daniel, Vaishnavi Sureshkumar, Muthusamy Sivakumar, and Sengottuvelan Balasubramanian 1.1 Introduction 1.2 Why Chitosan? 1.3 Chitosan-Based Polymer Nanocomposites 1.3.1 1.3 Chitosan-Based Polymer Nanocomposites 1.3.2 1.4 Mechanism of Heavy Metal Removal 1.5 1.5 Concluding Remarks and Future Trends Introduction 1.4 Mechanism of Heavy Metal Removal 1.5 1.5 Concluding Remarks and Future Trends Based Nanocomposites for the Treatment of Industrial Effluents Hemant Mittal, Balbir Singh Kaith, Ajay Kumar Mishra, and Shivani Bhardwaj Mishra 2.1 Introduction 2.1 Gum Polysaccharides 2.1.1 Gum Karaya 2.1.3 Gum Tragacanth 2.1.4 Gum Xanthan 2.1.5 Gum Gellan 2.1.6 Guar gum 2.1.7 Locust bean gum 2.1.7 Gum Ghatti 2.2 Stimuli-Responsive Nanocomposites 2.1 Temperature-Responsive Nanocomposites	

	2.3	Preparation of Nanocomposites	36
		2.3.1 Graft Copolymerization/Cross-Linking	36
		2.3.2 Suspension Polymerization	37
		2.3.3 Polymer Coacervation Process	37
		2.3.3.1 Simple coacervation process	37
		2.3.3.2 Complex coacervation	
		process	38
	2.4	Utilization of Nanocomposites for	
		Wasterwater Treatment	38
	2.5	Conclusion	39
3.	A View	on Cellulosic Nanocomposites for Treatment	
	of Was	tewater	47
	D. Sarc	avana Bavan and G. C. Mohan Kumar	
	3.1	Introduction	48
	3.2	Classification of Natural Fibers	48
	3.3	Structure of Natural Fibers	50
	3.4	Physical, Mechanical, and Other Properties	
		of Natural Fibers	52
		3.4.1 Problems with Natural Fibers	53
		3.4.2 Limitations of Natural Fibers	53
	3.5	Chemical Composition of Natural Fibers	54
		3.5.1 Cellulose	54
		3.5.2 Hemicellulose	55
		3.5.3 Lignin	56
		3.5.4 Pectin and Others	57
	3.6	Biocomposites/Green Composites	57
	3.7	Wastewater Treatment	58
	3.8	Classification of Wastewater Treatment	59
	3.9	Dye in Wastewater	61
	3.10	Adsorbents in Wastewater	64
		3.10.1 Activated Carbon	65
	3.11	Role of Agro-Fibers and Polymers in	
		Handling Wastewater	68
	3.12	Biosorption	69
	3.13	Activated Carbon from Plant Fibers as	
		Adsorbents	71
	3.14	Cellulose Nanocomposite Materials	73

	3.15 3.16	Cellulose Nanocrystals (Fibers and Whiskers) Conclusion	75 80			
	0110		00			
4.		Removal of Heavy Metals from Water Using PCL,				
		entonite Nanocomposites	97			
		Derrick S. Dlamini, Ajay K. Mishra, and				
	Bhekie	B. Mamba				
	4.1	Introduction	97			
	4.2	Polymeric Nanocomposites	98			
		4.2.1 Nanocomposite Formation and				
		Structure	99			
		4.2.1.1 Polymer–clay				
		nanocomposite formation	99			
		4.2.1.2 Polymer–clay				
		nanocomposite structure	104			
	4.3	Polymer-Clay Nanocomposites in				
		Heavy-Metal Removal from Water	109			
		4.3.1 Heavy-Metal Adsorption	109			
		4.3.1.1 Tailored morphology to				
		enhance adsorption	112			
		4.3.2 Heavy-Metal Retention by Granular				
		Filtration	115			
		4.3.3 Merits and Limitations of Polymeric				
		Nanocomposites in Water Treatment	118			
		4.3.3.1 Merits	118			
		4.3.3.2 Limitations	119			
5.	Role of	Polymer Nanocomposites in Wastewater				
•	Treatm		125			
	Ralhir	Singh Kaith, Saruchi, Vaneet Thakur,				
		umar Mishra, Shivani Bhardwaj Mishra,				
	and Hemant Mittal					
	5.1	Introduction	126			
	5.2	Types of Polymer Nanocomposites	120			
	5.2	5.2.1 Conventional Nanocomposites	120			
		5.2.2 Intercalated Nanocomposites	120			
		5.2.3 Exfoliated Nanocomposites	120			
	5.3	Methods of Preparation	129			
	5.5	methous of rieparation	129			

	5.3.1	Melt Compounding	129
	5.3.2	In situ Polymerization	129
	5.3.3	Bulk Polymerization	129
	5.3.4	Electrospinning	130
5.4	Chara	cterization	130
	5.4.1	X-Ray Diffraction	130
	5.4.2	Thermogravimetric Analysis	131
	5.4.3	Transmission Electron Microscopy	132
	5.4.4	Scanning Electron Microscopy	133
5.5	Applic	ation of Polymer Nanocomposites	134
	5.5.1	Dendrimers in Water Treatment	134
	5.5.2	Metal Nanocomposites	135
	5.5.3	Zeolites	135
	5.5.4	Carbonaceous Nanocomposites	136
5.6	Conclu	ision	137
of Or	ganic Pol	al Ozone Production for Degradation lutants via Novel Electrodes Coated by	
		te Materials	167
Mahi		ani and Ali Dorg Coloumani	207
7 1	moud Abl	oasi and Ali Reza Soleymani	
7.1	Introd	uction	168
7.1 7.2	Introd Ozona	uction tion Process in Water and	168
	Introd Ozona Waste	uction tion Process in Water and water Treatment	168 168
7.2 7.3	Introd Ozona Waste Oxidat	uction tion Process in Water and water Treatment cion Mechanism of Ozonation	168 168 169
7.2	Introd Ozona Waste Oxidat	uction tion Process in Water and water Treatment tion Mechanism of Ozonation Production Methods	168 168 169 173
7.2 7.3	Introd Ozona Waste Oxidat Ozone 7.4.1	uction tion Process in Water and water Treatment tion Mechanism of Ozonation Production Methods Corona Discharge Method	168 168 169 173 174
7.2 7.3	Introd Ozona Waste Oxidat Ozone 7.4.1 7.4.2	uction tion Process in Water and water Treatment tion Mechanism of Ozonation Production Methods Corona Discharge Method Photochemical Process	168 168 169 173 174 175
7.2 7.3	Introd Ozona Waste Oxidat Ozone 7.4.1 7.4.2 7.4.3	uction tion Process in Water and water Treatment tion Mechanism of Ozonation Production Methods Corona Discharge Method Photochemical Process Cold Plasma	168 168 169 173 174 175 175
7.2 7.3 7.4	Introd Ozona Waste Oxidat Ozone 7.4.1 7.4.2 7.4.3 7.4.3	uction tion Process in Water and water Treatment tion Mechanism of Ozonation Production Methods Corona Discharge Method Photochemical Process Cold Plasma Electrochemical Ozone Production	168 168 169 173 174 175 175 175
7.2 7.3 7.4 7.5	Introd Ozona Waste Oxidat Ozone 7.4.1 7.4.2 7.4.3 7.4.4 Anode	uction tion Process in Water and water Treatment tion Mechanism of Ozonation Production Methods Corona Discharge Method Photochemical Process Cold Plasma Electrochemical Ozone Production Materials	168 168 169 173 174 175 175
7.2 7.3 7.4	Introd Ozona Waste Oxidat Ozone 7.4.1 7.4.2 7.4.3 7.4.4 Anode	uction tion Process in Water and water Treatment tion Mechanism of Ozonation Production Methods Corona Discharge Method Photochemical Process Cold Plasma Electrochemical Ozone Production Materials ation of Electrochemically Generated	168 168 169 173 174 175 175 175

8.	Core–S	Core–Shell Nanocomposites for Detection of Heavy			
	Metal lons in Water Sheenam Thatai, Parul Khurana, and Dinesh Kumar			191	
	8.1	Introd	uction	192	
	8.2	Classif	Classification of Nanocomposites		
	8.3	Methods for Preparation of Nanomaterials			
		as Nan	ofillers	195	
		8.3.1	Fe ₃ O ₄ Nanoparticles	197	
		8.3.2	TiO ₂ Nanoparticles	197	
		8.3.3	CdS, PbS, and CuS Nanoparticles	197	
		8.3.4	SiO ₂ Nanoparticles	197	
	8.4	Metho	ds for Preparation of Nanomaterials		
		as Mat	rix	198	
		8.4.1	Au Nanoparticles	200	
		8.4.2	Ag Nanoparticles	200	
	8.5	Methods for Preparation of Nanocomposites			
		8.5.1	SiO ₂ @Ag Core–Shell		
			Nanocomposites	203	
		8.5.2	SiO ₂ @Au Core–Shell		
			Nanocomposites	203	
		8.5.3	Fe ₃ O ₄ @Au Core–Shell		
			Nanocomposites	204	
		8.5.4	Ag@Au Core-Shell Nanocomposites	205	
	8.6	Charac	cterization of Nanomaterials and		
		Nanoc	omposites	205	
		8.6.1	Optical Probe Characterization		
			Techniques	206	
		8.6.2	Electron Probe Characterization		
			Techniques	206	
		8.6.3	Scanning Probe Characterization		
			Technique	207	
		8.6.4	Spectroscopic Characterization		
			Technique	207	
	8.7	Sensin	g and Detection Using Smart		
		Nanoc	omposites	208	
	8.8 Conclusion		214		

9.	9. Conducting Polymer Nanocomposite–Based Membrane for Removal of Escherichia coli and				
	Total Coliforms from Wastewater			221	
	Нета і	Hema Bhandari, Swati Varshney, Amodh Kant Saxena,			
	Vinod Kumar Jain, and Sundeep Kumar Dhawan				
	9.1				
	9.2				
		Nanoco	omposites Impregnated AC Membrane	226	
		9.2.1	Synthesis of Ag-NPs	226	
		9.2.2	Development of PPY Ag-NPs		
			Impregnated AC Membrane	226	
	9.3	Antimi	crobial Activity Test Methods	227	
		9.3.1	Membrane Filtration Method	228	
	9.4	Charac	terization of PPY-Ag Nanocomposite	230	
		9.4.1	Structural Characterization	230	
			9.4.1.1 FTIR spectra	230	
			9.4.1.2 Conductivity measurement	231	
			9.4.1.3 X-ray diffraction analysis	231	
		9.4.2	Thermogravimetric Analysis	232	
		9.4.3	Antistatic Study	234	
		9.4.4	Morphological Characterization	236	
	9.5	Antimi	crobial Activity	237	
		9.5.1	Antimicrobial Mechanism of PPY-Ag		
			Nanocomposite Impregnated		
			AC Fiber	241	
	9.6	Conclu	sion	242	
10.	Titaniu	m Dioxi	de-Based Materials for Photocatalytic		
			Water Pollutants	247	
	Sónia A. C. Carabineiro, Adrián M. T. Silva, Cláudia G. Silva, Ricardo A. Segundo, Goran Dražić,				
	José L. Figueiredo, and Joaquim L. Faria				
	10.1	Introdu	uction	248	
	10.2	Experi	ments	250	
		10.2.1	Preparation of Titanium Dioxide		
			Supports	250	
		10.2.2	Gold Loading	251	
		10.2.3	Characterization Techniques	251	

	10.2.4	Catalytic Tests	252
10.3	.3 Result	Results and Discussion	
	10.3.1	Characterization of TiO ₂ Materials	253
	10.3.2	Characterization of Au/TiO ₂	
		Materials	256
	10.3.3	Catalytic Results for DP	
		Photodegradation	258
	10.3.4	Photocatalytic Degradation of	
		Phenolic Compounds using P25	
		Catalyst	261
10.	4 Conclu	sion	264
Index			271

Preface

A composite is defined as a combination of two or more materials with different physical and chemical properties and distinguishable interface. There are many advantages of composites over many metal compounds, such as high toughness, high specific stiffness, high specific strength, gas barrier characteristics, flame retardancy, corrosion resistance, low density, and thermal insulation. Composite materials are composed of two phases: the continuous phase known as matrix and the dispersed phase known as reinforced materials. Nanomaterials, in particular nanocomposites, have diversified applications in different areas such as biological sciences, drug delivery systems, and wastewater treatment. In nanocomposites, the nanoparticles were incorporated within different functionalized materials such as multiwalled carbon nanotubes, activated carbon, reduced grapheme oxide, and different polymeric matrices.

Water pollution is mainly caused by the pollutants that result in severe environmental problems. In recent years, various methods for heavy metal detection from water have been extensively studied. A different variety of core-shell nanocomposites such as SiO₂@ Au and SiO₂@Ag were also used as a tool for water purification. These nanocomposites provide high surface area and a specific affinity for heavy metal adsorption from aqueous systems. The adsorption of different pollutants such as heavy metal ions and dyes from the contaminated water using nanocomposites has attracted significant attraction due to their characteristic properties such as extremely small size, very large surface area, absence of internal diffusion resistance, and high surface-area-to-volume ratio. Metal oxide nanoparticles, including aluminum oxides, titanium oxides, magnesium oxides, cerium oxides, and ferric oxides, have been proved to be very efficient for the removal of various pollutants from the aqueous water.

Nanocomposites have better adsorption capacity, selectivity, and stability than nanoparticles. Magnetic nanocomposites are also a very efficient class of nanocomposites in which magnetic nanoparticles have been used as the reinforcing material. They have the advantages of both magnetic separation techniques and nano-sized materials, which can be easily recovered or manipulated with an external magnetic field. They are also very effective for the removal of both organic and inorganic pollutants from the pollutant water.

This book describes the applications of nanocomposites in various areas, including environmental science, such as remediation and speciation, water research, medicine, and sensors. The application of nanocomposites in wastewater research, which includes organic, inorganic, and microbial pollutants, has also gained more attention in research. The book contains a comprehensive discussion about wastewater research.

Researchers working in the similar domain of research will benefit from the fundamental concepts and advanced approaches described in the book. Researchers involved in the environmental and water research on nanocomposites and their applications will be major beneficiaries of the content of the book. The book will also be beneficial to the researchers who are working for their graduate and postgraduate degrees in the area of nanotechnology. It provides a platform for all researchers as it covers a vast background for the recent literature, abbreviations, and summaries. It will be a worthy read for the researchers in the fields of nanotechnology and engineered materials who are interested in nanocomposites.

The book covers a broader research area of chemistry, physics, materials science, polymer science and engineering, and nanotechnology to present an interdisciplinary approach. It presents the fundamental knowledge with the recent advancements in the research and development of nanocomposites. It discusses the recent approach and prospects about the current research and development in nanocomposites.

Ajay Kumar Mishra