

Hydrogenated Dilute Nitride Semiconductors

Hydrogenated Dilute Nitride Semiconductors

Theory, Properties, and Applications

edited by Gianluca Ciatto

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Hydrogenated Dilute Nitride Semiconductors: Theory, Properties, and Applications

Copyright © 2015 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4463-45-4 (Hardcover) ISBN 978-981-4463-46-1 (eBook)

Printed in the USA

Contents

Pr	eface		ix
1	An (Overview of Dilute Nitrides Theory and Properties	1
	Eoin	P. O'Reilly	
	1.1	Introduction	2
	1.2	Band-Anticrossing Model of Dilute Nitrides	5
	1.3	Conduction Band States in GaNAs	10
	1.4	Alloy Scattering and Transport in Dilute Nitride Alloys	15
	1.5	Dilute Nitride Lasers	19
		1.5.1 Theoretical Analysis of Dilute Nitride Lasers	21
		1.5.2 Experimental Analysis of Dilute Nitride Lasers	24
	1.6	Summary and Conclusions	28
2	Fffe	cts of Hydrogenation on the Electronic Properties of	
_		te Nitrides	31
		gio Pettinari, Antonio Polimeni, and Mario Capizzi	-
		Introduction	32
	2.2	Experimental Methods	35
		2.2.1 Hydrogenation	35
		2.2.2 Optical Characterization	35
		2.2.3 Structural Characterization	36
		2.2.4 Sample Growth	37
	2.3	Hydrogen-Induced Band-Gap Tuning	37
	2.4	Nitrogen-Hydrogen Complexes and Their Spatial	
		Distribution	39
	2.5	Reversibility of the Hydrogen Effects	42
		2.5.1 Thermal-Induced N–H Complex Dissociation	43
		2.5.2 Photon-Induced N–H Complex Dissociation	48
	2.6	Hydrogen-Induced Tuning of Electronic Properties	53

		2.6.1 Electron Effective Mass in Ga(AsN)	54	
		2.6.2 Effective Mass Restoration upon		
		Hydrogenation and Relative Importance of		
		Different NC States	62	
		2.6.3 Electron Gyromagnetic Factor in Ga(AsN)	67	
	2.7	Conclusions	73	
3	Effe	ct of H on Defects in Dilute Nitrides	75	
	D. D	agnelund, W. M. Chen, and I. A. Buyanova		
	3.1	3.1 Introduction		
	3.2	Experiments	78	
		3.2.1 Description of the ODMR Technique	78	
		3.2.2 Ga Interstitial-Related ODMR Signal	80	
		3.2.3 Samples	82	
	3.3	GaNP Alloys	85	
		3.3.1 Mechanism of Defect Formation	87	
	3.4	GaNAs Alloys	92	
		3.4.1 ODMR	92	
		3.4.2 DLTS	95	
	3.5	Conclusions	98	
4	The	ory of Hydrogen in Dilute Nitrides	99	
	Aldo	Amore Bonapasta and Francesco Filippone		
	4.1	Introduction	100	
	4.2	Theoretical Methods	102	
	4.3	General Properties of H in III-V Semiconductors	107	
	4.4	N Impurity and H-N Complexes in Dilute III-V		
		Semiconductors	113	
	4.5	Energetics, Charge States, Formation Mechanisms,		
		and Vibrational Properties of H–N Complexes	116	
	4.6	Mechanism of N Passivation	122	
	4.7	Conclusions	127	
5	Mic	roscopic Structure of N–H $_n$ Complexes in Dilute Nitride		
	Sem	iconductors Revealed by Their Vibrational Properties	129	
	Mic	hael Stavola and W. Beall Fowler		
	5.1	Introduction	129	
	5.2	Vibrational Properties of the H-N-H Complex	130	

		5.2.1	Effect of H Irradiation on Nitrogen Modes	131
		5.2.2	Two Weakly Coupled N-H Modes	134
		5.2.3	A Canted H-N-H Center and Its Vibrational	
			Properties: Theory	139
	5.3	Piezos	spectroscopy of the H–N–H Center	141
		5.3.1	Symmetry of the H–N–H Center	142
		5.3.2	Canting Distortion of the H-N-H Center	146
		5.3.3	Response to a Challenge to the D-N-D	
			Structure: Sensitivity of the N-D Modes to	
			Stress	149
	5.4	Micro	scopic Explanation of Compressive Strain	152
		5.4.1	IR Spectroscopy of $GaAs_{1-y}N_y$:D Showing	
			Compressive Strain	153
		5.4.2	$N-H_n$ Centers with $n > 2$ Built from an $H-N-H$	
			Core Structure	157
	5.5	Concl	usion	159
6	Stru	cture o	of Nitrogen-Hydrogen Complexes from X-Ray and	
	Synd	hrotro	n Radiation Techniques	161
	Giar	ıluca Ci	atto and Federico Boscherini	
	6.1	Introd	duction	162
	6.2	Struct	tural Effects of Hydrogenation of Dilute Nitrides	163
	6.3	X-Ray	Spectroscopies of Semiconductors	168
		6.3.1	X-ray Absorption Spectroscopy	168
		6.3.2	EXAFS and XANES	173
		6.3.3	Spectroscopy in Diffraction Conditions: DAFS	177
			6.3.3.1 The basic idea	177
			6.3.3.2 Data analysis	179
			6.3.3.3 The experimental setup	181
		6.3.4	X-Ray Emission Spectroscopy	182
	6.4	Exper	rimental Results and Simulations	185
		6.4.1	Local Structure of N-H Complexes in Dilute	
			Nitrides	185
		6.4.2	Effects of Hydrogenation on the Interatomic	
			Distances	195
		6.4.3	Probing the Local Electronic Structure of	
			Nitrogen in Dilute Nitrides	201
	6.5	Concl	usions	204

7	Stoi	chiometry of Nitrogen–Hydrogen Complexes in Dilute		
	Nitr	Nitrides		
	Marina Berti, Gabriele Bisognin, and Davide De Salvador			
	7.1	Introduction	208	
	7.2	High-Resolution X-Ray Diffraction	210	
	7.3	Ion Beam Analysis Techniques	214	
	7.4	Results and Discussion	219	
8	Tech	nological Applications of Hydrogenated Dilute Nitrides		
	and	Perspectives	227	
	Rina	ldo Trotta and Marco Felici		
	8.1	Introduction	228	
	8.2	Controlling Hydrogen Diffusion in Dilute Nitrides:		
		A New Ground for Nanotechnology	232	
	8.3	In-Plane Band-Gap Engineering: Site-Controlled		
		Semiconductor Nanostructures	238	
		8.3.1 First Evidence of Carrier Quantum		
		Confinement in GaAsN/GaAsN:H		
		Nanostructures	239	
		8.3.2 GaAsN/GaAsN:H Site-Controlled Quantum Dots	242	
	8.4	Light Polarization Control via Strain Engineering		
	8.5	5 H-Assisted Tailoring of Pre-Existing, Site-Controlled		
		InGaAsN Nanostructures	250	
	8.6	"Direct Writing" Methods	252	
		8.6.1 Electron Beam Writing	253	
		8.6.2 Laser Annealing	255	
	8.7	Other Technologically Relevant Properties Affected by		
		Hydrogenation	255	
		8.7.1 Refractive Index	256	
		8.7.2 Electrical Resistance	258	
	8.8	Conclusions and Outlook	259	
Bi	bliog	raphy	265	
In	dex		297	

Preface

Dilute nitride semiconductors are an example of the failure of "linear" models for the physical properties of solids: the addition of a few percent of N to GaAs causes changes in the physical properties that are opposite to those expected, assuming a linear interpolation of the GaAs and GaN properties. Even more surprisingly, the effect of nitrogen incorporation can be eliminated by exposure of the sample to a hydrogen flow. This book addresses in detail the modifications of the electronic structure and optical and structural properties induced by atomic hydrogen irradiation in technologically relevant dilute nitride semiconductors. The discussion of the experimental results from several techniques is enriched by state-of-the-art theoretical studies aimed at clarifying the origin of hydrogenation effects, which resides in the formation of specific nitrogen-hydrogen complexes. The nonlinear behavior of nitrogen and the passivation effect of hydrogen in dilute nitrides open the way to the manufactory of a new class of nanostructures with in-plane variation of the optical band gap.

The idea of this book emerged as an extension of an invited talk I gave in 2011 at the International Conference on Materials for Advanced Technologies (ICMAT 2011) in Singapore. The early outline of a monograph on the structural effects of hydrogenation was expanded in order to cover all aspects related to hydrogenated dilute nitride semiconductors, depending on the consideration that none of the books available on the topic of dilute nitrides had focused on the effects of hydrogenation. We estimated, indeed, that the huge number of recent published results on the theory, characterization, and nanomanipulation of hydrogenated dilute nitrides deserved collection in the form of a free-standing review volume.

With the present book, which is born out of several exchanges and collaborations between the different authors, we intend to tell

the complete story of the amazing effects of hydrogen irradiation, from their first observation to the discovery of their physical origin and potential technology transfer. Our work primarily aims to guide graduate students and young scientists into the field but should be also of interest for more experienced scientists in research laboratories and academia. Moreover, we believe that the wide range and complementarity of the experimental techniques applied in the research here presented could inspire similar approaches in other fields of semiconductor science and condensed matter.

The book begins with an introductory chapter giving an overview of the unusual electronic structure and properties of dilute nitrides. This is followed by two chapters that present the hydrogenation technique and its effects on electronic properties and defects. The fourth chapter provides the theoretical basis of the mechanism of H-induced N passivation in dilute nitrides. This is followed by three chapters devoted to the effects of hydrogenation on the structure, addressed by different characterization techniques that allowed us to unveil the detailed structure of the specific N-H defect ruling the physical properties of these alloys. The last chapter describes how spatially selective hydrogenation of dilute nitride semiconductors can be used for the fabrication of a new class of site-controlled micro- and nanostructures with technological applications in nanophotonics and nanoelectronics.

It is a pleasure to acknowledge all the authors for the substantial time and efforts dedicated to the preparation of the different chapters. I appreciated very much their care and motivation toward a topic for which we share the same passion and enthusiasm. I would like to express many thanks to Stanford Chong for the invitation to develop the concepts of my talk into a book and to all Pan Stanford Publishing staff, in particular to Sarabjeet Garcha, Ritesh Kumar, and Archana Ziradkar, for their invaluable help while preparing the manuscript.

> **Gianluca Ciatto** Synchrotron SOLEIL L'Orme des Merisiers, Saint-Aubin BP 48, F-91192 Gif sur Yvette CEDEX, France January 2015