

NANOSTRUCTURAL BIOCERANICS Advances in Chemically Bonded Ceramics

NANOSTRUCTURAL BIOCERAMICS

NANOSTRUCTURAL BIOCERAMICS

Advances in Chemically Bonded Ceramics

Leif Hermansson

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics

Copyright © 2015 by Pan Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4463-43-0 (Hardcover) ISBN 978-981-4463-44-7 (eBook)

Printed in the USA

Contents

Prefa	асе		xi
1.	Introd	uction to Nanostructural Chemically	Bonded
	Biocer		1
	1.1	Chemically Bonded Bioceramics: A	n Overview 1
	1.2	Stable and Resorbable Chemically	
		Ceramics	4
		1.2.1 Stable Chemically Bonded	Bioceramics 4
		1.2.2 Resorbable Chemically Bo	
		Bioceramics	6
	1.3	Summary and Conclusions	8
2.		ares of Hard Tissue and the Importar	
		-, in vivo–Formed Bioceramics	11
	2.1	Hard Body Tissue Structures: An C	
	2.2	Interaction between Chemically Bo	
		Ceramics and Hard Tissue	13
		2.2.1 Contact Zone Reaction bet	
		Chemically Bonded Biocer	
		and Hard Tissue	13
	2.3	Summary and Conclusion	16
3.	Overvi	ew of Chemical Reactions, Processin	g.
		operties	17
	3.1	Chemical Reactions during Setting	and
		Hardening: An Overview	17
		3.1.1 Mechanism 1	18
		3.1.2 Mechanisms 2 and 3	18
		3.1.3 Mechanism 4	19
		3.1.4 Mechanism 5	20
		3.1.5 Mechanism 6	20
	3.2	Property Features of Chemically B	onded
		Bioceramics	21
		3.2.1 Property Profile Aspects	21
		3.2.2 Practical Properties	23

	3.3	Summ	ary and Conclusion	25
4.	Additiv 4.1		d in Chemically Bonded Bioceramics ves Normally Used for Chemically	29
			ed Bioceramics	29
		4.1.1	Complementary Binding Phases for	
			Chemically Bonded Bioceramics	30
		4.1.2	Processing Agents for Chemically	
			Bonded Bioceramics	30
		4.1.3	Fillers Used in Chemically Bonded	
	_	_	Bioceramics	31
	4.2	Summ	ary	32
5.	Test M	ethods	with Special Reference to Nanostructural	
	Chemi	cally Bo	nded Bioceramics	33
	5.1	Introd	uction	33
	5.2	Test M	lethods and Nanostructures	34
		5.2.1	Micro-/Nanostructural Evaluation	34
		5.2.2	Mechanical Properties	34
		5.2.3	Dimensional Stability: Shrinkage or	
			Expansion?	36
	5.3	Summ	ary	36
6.	Why E	ven Diff	icult to Avoid Nanostructures in	
			nded Bioceramics?	41
	6.1	Why N	Ianostructures in Chemically Bonded	
		Biocer	amics?	41
		6.1.1	Calculations	42
	6.2	Nanos	tructures in the Calcium	
		Alumi	nate–Calcium Phosphate System	43
	6.3	Conclu	ision	47
7.	Nanos	tructure	es and Related Properties	49
	7.1		tructure, Including Crystal Size and	
			ty Structure	49
		7.1.1	Nanostructure, Including the	
			Nanoporosity Developed	49
		7.1.2		
			(Contact Zone) Closure	50
	7.2	Nanos	tructures and Mechanical Strength	51

	7.3	Additional Property Features of	
		Nanostructural Chemically Bonded	50
	- 4	Bioceramics	52
	7.4	Conclusion	53
		Appendix: Theoretical Model for Calculation	F 2
		of the Optimal Volume Share of Fillers	53
8.	Nanos	tructures and Specific Properties	57
	8.1	Nanostructures, Including Phases and	
		Porosity for Specific Properties	57
		8.1.1 Bioactivity and Anti-Bacterial	
		Properties Simultaneously	58
		8.1.1.1 Bioactivity	58
		8.1.1.2 Anti-bacterial aspects	58
		8.1.2 Microleakage	61
	8.2	Drug Delivery Carriers	64
	8.3	Haemocompatibility	64
	8.4	Conclusions and Outlook	67
9.	Dental	Applications within Chemically Bonded	
	Biocer		71
	9.1	Chemically Bonded Bioceramics for Dental	
		Applications: An Introduction	71
	9.2	Dental Applications	73
		9.2.1 Dental Cements	73
		9.2.2 Endodontics	75
		9.2.3 Dental Fillings	78
		9.2.4 Dental Implant Coatings	79
	9.3	Summary and Conclusion	79
10.	Orthor	paedic Applications within Nanostructural	
-	-	cally Bonded Bioceramics	83
	10.1	Biomaterials for Orthopaedic Applications	83
	10.2	Chemically Bonded Bioceramics for	
		Orthopaedic Applications	84
		10.2.1 Ca-Aluminate-Based Orthopaedic	
		Materials	84
		10.2.1.1 PVP	85
		10.2.1.2 KVP	85

		10.2.2	Ca-Alumi	nate-Based Orthopaedic	
			Coating N	Aaterials	87
			10.2.2.1	Point-welding	89
	10.3	Summa	ary and Co	onclusions	90
11.	Carrier	s for Dru	ug Delivery	Based on Nanostructural	
	Chemio	ally Bor	nded Bioce	ramics	93
	11.1	Chemio	cally Bond	ed Bioceramics as Carriers	
			0	r: Introduction	93
	11.2	Import	ant Aspec	ts of Carriers for Drug	
		Deliver	У		94
		11.2.1	General A	Aspects	95
		11.2.2	Drug-Loa	ding and Manufacturing	
			Aspects		97
		11.2.3	Drug Rel	ease Control Aspects	99
			11.2.3.1	Types of chemically bonded	
				ceramics	99
			11.2.3.2	Grain size distribution	99
			11.2.3.3	Microstructure of additional	
				particles (additives) for	
				drug incorporation	100
			11.2.3.4	Pharmaceutical	
				compositions	101
	11.3	Summa	ary and Co	onclusion	102
12.			ations and	•	105
	12.1			on: An Introduction	105
	12.2			ial Evaluation	106
			Introduc		106
		12.2.2		iting Cement: Prospective	
			Observat		107
		12.2.3		tic Fillings: A Retrospective	
			-	tion of a Ca-Aluminate-Based	
				in Root Canal Sealing	113
	12.3	-		material Evaluation	118
		-	Introduc		118
		12.3.2	Clinical S		119
			12.3.2.1	A prospective clinical study	
				in PVP	123
		12.3.3	Presenta	tion of clinical results	125

12.3.3.1 Primary effectiveness	
variable	125
12.3.3.2 Secondary effectiveness	
variables	127
all Conclusions	129
n and Summary of Beneficial Features	
ctural Chemically Bonded Bioceramics	133
oduction: A Classification of Biomaterials	133
essing and Property Profile	136
ue Properties	137
ications for Nanostructutal Chemically	
led Bioceramics	137
cts of Nanostructural Chemically Bonded	
cts of Nanostructural Chemically Bonded	141
c ts of Nanostructural Chemically Bonded oduction	141 141
-	
oduction	141
oduction ible Future Developments	141 142
oduction ible Future Developments .1 Nanostructural CBBC Materials	141 142 142
oduction ible Future Developments .1 Nanostructural CBBC Materials .2 Specific Properties	141 142 142 142
oduction ible Future Developments .1 Nanostructural CBBC Materials .2 Specific Properties .3 Active Additives	141 142 142 142 142
oduction ible Future Developments .1 Nanostructural CBBC Materials .2 Specific Properties .3 Active Additives .4 Third-Generation Biomaterials	141 142 142 142 142 142 143
oduction ible Future Developments .1 Nanostructural CBBC Materials .2 Specific Properties .3 Active Additives .4 Third-Generation Biomaterials	141 142 142 142 142 142 143 143
	12.3.3.2 Secondary effectiveness variables all Conclusions and Summary of Beneficial Features trural Chemically Bonded Bioceramics duction: A Classification of Biomaterials essing and Property Profile ue Properties ications for Nanostructutal Chemically

Preface

It is a great honor to present this book on 'nanostructural chemically bonded bioceramics'. The direct opportunity of this opened up after a speech on 'Why even difficult to avoid nanostructures in chemically bonded calcium aluminate-based biomaterials'. The invitation to write this book from Pan Stanford Publishing is thankfully acknowledged.

Writing a book, which covers a whole new technology within biomaterials science (materials, processing, properties, biological response, clinical evaluation, new applications, etc.), is of course not one person's work. I would like to acknowledge the following people contributing to the thinking in this book. I will start with my wife Irmeli, a dental technician, who challenged the author some decades ago with the question 'Why don't you from your ceramic platform do something which makes sense?' She wanted a substitute for amalgam. This started a work at Karolinska Institute at the former Center for Dental Technology and Biomaterials, Stockholm University, Sweden. Prof. Rune Söremark, late Associate Prof. Folke Sundström, and Associate Prof. Yangio Li are specifically acknowledged. The input from CEO Torgny Nilsson of KRISS, Sweden, was fundamental for the start of the new activities. After some turbulent years, the author met his 'positive anti-picture,' Dan Markusson, who has been of great general help in understanding biomaterials product development. Dan is now CEO of Peptonic Medical AB, Sweden. The work at Karolinska Institute, and later at Uppsala University, Sweden, have contributed enormously to the understanding of nanostructural chemically bonded biomaterials. The work by Prof. Håkan Enqvist, Tech. Drs. Lars Kraft and Jesper Lööf, and Associate Prof. Erik Adolfsson are thankfully acknowledged. Early cooperation with Prof. Roger Carlsson and Associated Prof. Elis Carlström and colleagues at Swedish Ceramic Institute (now within IVF-SWEREA), Prof. Richard Bradt, Pennsylvania State University, USA, and Prof. Hans Larker at former ABB Cerama AB (now Saint Gobain Advanced Ceramics AB), Sweden, have been fundamental for basic understanding of materials science. The author would like to thank all personnel within Doxa AB,

Sweden, and people related to development activities with several universities in Sweden and Europe. Finally I would like to express my great thank for support from relatives and friends in different ways.

> Leif Hermansson Summer 2014