Lev S. Ruzer

Nanoparticles Nanoparticles in Humans Experiments, Methods, and Strategies

Nanoparticles in Humans

Nanoparticles Nanoparticles in Humans Experiments, Methods, and Strategies

Lev S. Ruzer

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Nanoparticles in Humans: Experiments, Methods, and Strategies

Copyright © 2017 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4463-16-4 (Hardcover) ISBN 978-981-4463-17-1 (eBook)

Printed in the USA

I dedicate this work to my dearest friend, Professor Tatjana Tolstikova

Contents

Preface	2	xi
Acknow	vledgements	xiii
1 Rad	on Deadlock	1
1.1	Radon and Health	1
2 Me	asurement of the Concentration of Decay Products of	
Rad	on, Thoron, and Actinon	7
2.1	Characteristics of Radon Progeny	7
2.2	The Basic Equations for Radon Decay Product Series	9
2.3	The General Activity Methods of Measuring	
	Concentration of Radon Decay Products	11
2.4	Measurement of Radon Decay Products in Air by	
	Alpha and Beta Spectrometry	13
	2.4.1 Measurement Procedure and Experimental	
	Results	14
2.5	Absorption of Alpha Radiation in the sample	19
2.6	Measurement Procedure for Determination of Activity	
	of RaA, RaB, RaC, and RaC' on Filter by Alpha and Beta	
	Spectrometry	21
	2.6.1 ²¹⁸ Po (RaA) Activity Measurement	21
	2.6.2 ²¹⁴ Po (RaC') Activity Measurement	23
	2.6.3 ²¹⁴ Pb (RaC) Activity Measurement	25
	2.6.4 ²¹⁴ Bi (RaB) Activity Measurement	25
	Characteristics of Thoron and Actinon Decay Products	26
2.8	The Basic Equations for Thoron and Actinon Series	27
	2.8.1 Thoron Series	27
	2.8.2 Actinon Series	30
2.9	Conclusion	32

3	Una	ttacheo	d Activity of Radon Progeny	35				
	3.1	Unatt	ached Activity Properties	35				
		3.1.1	The Attachment of Atoms of Radon Progeny to					
			Non-Radioactive Aerosols	37				
		3.1.2	Equilibrium Conditions between Unattached					
			Activity, Aerosols, and Surface Activity	40				
		3.1.3	Size (Diffusion Coefficient) Distribution of the					
			Unattached Activity	42				
		3.1.4	A Nuclear Mass Spectrometer for Studying					
			Radon Progeny Cluster	43				
	3.2	Corre	lation between the Unattached Activity of Radon					
		Decay	Products and Aerosol Concentration	44				
	3.3	Measu	urements of Other Radon Decay Product					
		Unatt	ached Activity Concentration	53				
	3.4	The E	ffect of Recoil Nuclei Being Knocked Off Aerosol					
		Partic	eles Unattached Concentration of Radon Decay					
		Produ		55				
	3.5	Concl	usion	58				
4	Met	Method of Direct Measurement of Activity (Dose) in Miners'						
	Lung	gs		61				
			luction	62				
	4.2		ry of the Method	63				
	4.3	Asses	sment of the Uncertainties in the Evaluation of					
		the Do	ose	66				
	4.4		ction for the Shift of Equilibrium of Radon					
		0	eny in the Air and in the Lungs	69				
	4.5		Inting for Parametric Variations: Variations of					
			entrations, Breathing Rate and Deposition					
			cients in Real Working Conditions	75				
	4.6	Mode	l Measurement	77				
	4.7	Phant	com Measurements and Geometric Corrections	78				
	4.8		sment of the Errors of the Direct Method	81				
	4.9		ble Instrument for Direct Measurement of the					
			ty of Radon Decay Products in the Lungs of					
		Miner	`S	85				

5	Assessment of the Nanoparticles' Surface Area by				
	Measuring the Unattached Activity of Radon Progeny				
	5.1	The Unattached Activity of Radon Decay Products	91		
	5.2	Conclusion	95		
6	Local Deposition of Nanoparticles in the Human Lung				
	6.1	Safety of Radioactive Markers in Aerosol Exposure			
		Studies	101		
	6.2	Assessment of Particle Deposition in Lungs	102		
	6.3	Previous Experiments with This Method	104		
	6.4	Human Studies	105		
	6.5	Controlled Protocol for Study of Nanoparticle Lung			
		Deposition in Human Subjects	106		
	6.6	Discussion and Conclusion	109		
7	Exposure and Dose in Nanoaerosols Studies 1				
	7.1	Exposure: Definitions	115		
	7.2	Examples of Exposure–Effect Study without Dose			
		Assessment	118		
	7.3	Nanoparticle: Definition	119		
	7.4	Nanoparticles Dosimetric Road Map	122		
	7.5	Nanoparticle Surface Area Measurements	124		
	7.6	Nanoparticle Respirators' True Effectiveness			
		Measurements	126		
	7.7	Local Lung Deposition and Dosimetry for			
		Nanoparticles	126		
	7.8	Human Experiment Safety Problems	127		
	7.9		128		
In	dex		133		

Preface

The history of radon and the associated health effect (lung cancer) is very long—from the 15th century—and it consists of two parts: radon in mines and residential radon. In the majority of studies, radon measurements were provided as a proof of the effect (lung cancer). However, radon is an inert gas, and it is not precipitated (not remained) in the lung. Therefore, it cannot be completely responsible for lung irradiation and correspondingly lung cancer. Radon progeny precipitate in the lung. They also can precipitate to the particles, including particles in the nanometer range, and therefore they can be used as radioactive markers in the study of nanoparticles.

This book presents new ideas, methods, and some experimental results to measure the surface area and local deposition of nanoparticles in lungs and the true effectiveness of respirators, together with a nanoparticle dosimetric road map that can be used as a general strategy for the assessment of dose, which is the most important physical cause of the health effect in case of nanoparticle exposure. It proposes the use of 1 nm radioactive particles, called unattached activity of radon progeny, as a safe experimental tool for nanoparticle studies, including human studies. Such ideas have not been presented before. The text includes some discussion on radon from the historical point of view.

Acknowledgments

I appreciate the support of the Environmental Energy Technology Division of Lawrence Berkeley National Laboratory and thank William Fisk, Ashok Gadgil, Olivia Salazar, and Terry Chen for the technical help. I am also grateful to my family—my son, Serge Ruzer; my daughter, Genia, and her husband, Sasha; and especially my grandchildren, Joseph, Liza, Ada, and Simona—for their variegated technical assistance.