

Chemotherapeutic Engineering

Collected Papers of Si-Shen Feng A Tribute to Shu Chien on His 82nd Birthday

> edited by Feng Si-Shen Jenny Rompas Stanford Chong

A Tribute to Professor Shu Chien on His 82nd Birthday

六院院士 世界唯一

The only one in the world who simultaneously holds six Academicians: US Academy of Sciences, US Academy of Engineering, US Institute of Medicine, US Academy of Arts & Sciences, Chinese Academy of Sciences, and Academia Sinica, Taiwan

Chemotherapeutic Engineering

Chemotherapeutic Engineering

Collected Papers of Si-Shen Feng A Tribute to Shu Chien on His 82nd Birthday

> edited by Feng Si-Shen Jenny Rompas Stanford Chong

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Chemotherapeutic Engineering: Collected Papers of Si-Shen Feng—A Tribute to Shu Chien on His 82nd Birthday

Copyright © 2014 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4463-14-0 (Hardcover) ISBN 978-981-4463-15-7 (eBook)

Contents

PI	ејисе		XXXVII
		Part I Introduction	
1	Che	notherapeutic Engineering: Concept, Feasibility, Safety and	
	Pros	pect—A Tribute to Shu Chien's on His 82nd Birthday	3
		nen Feng	
		Introduction	3
	1.2	Nanotechnologies in Chemotherapeutic Engineering	5
		1.2.1 Prodrugs—Polymer–Drug Conjugation	5
		1.2.2 Micelles	6
		1.2.3 Liposomes	6
		1.2.4 Nanoparticles of Biodegradable Polymers	6
		1.2.5 Combined Nanoparticle-Vesicle Systems	7
		Proof-of-Concept Experimental Results	7
	1.4	Safety Issue	14
	1.5	Prospect	14
		PART II CHEMOTHERAPEUTIC ENGINEERING: CONCEPTS	
_	Cl	and the same of th	
2		motherapeutic Engineering: Application and Further Development hemical Engineering Principles for Chemotherapy of Cancer	
		Other Diseases	21
		nen Feng and Shu Chien	21
		Introduction	21
	2.1	2.1.1 Cancer and Cancer Chemotherapy	21
		2.1.2 Problems in Chemotherapy	23
		2.1.3 Chemotherapeutic Engineering	27
	2.2	Nanoparticle Technology for Chemotherapy	29
	2.2	2.2.1 Manufacture of Nanoparticles	31
		2.2.2 Nanoparticle Characterization	35
		2.2.3 In vitro Experiments	40
		2.2.4 Animal Tests and Clinical Trials	43
	2.3	Liposomes for Chemotherapy	45
		2.pessemes for shemomerapy	10

	2.4	Liposomes-in-Microspheres	47
	2.5	Oral Chemotherapy	49
	2.6	Blood-Brain Barrier	51
	2.7	Molecular Interactions between Anticancer Drugs and Cells	52
	2.8	Mathematical Modeling and Computer Simulation	54
3	Nev	r-Concept Chemotherapy by Nanoparticles of Biodegradable	
	Poly	mers: Where Are We Now?	81
	Si-Si	nen Feng	
	3.1	Copolymer Synthesis and Nanoparticle Preparation	85
		Nanoparticle Characterization	86
	3.3	In vitro Cellular Uptake of Nanoparticles	88
	3.4	In vitro Cancer Cell Viability	90
	3.5	In vivo Pharmacokinetics	92
	3.6	Xenograft Model	94
		Multifunctional Nanoparticles	95
	3.8	Conclusions	97
	3.9	Future Perspective	98
4	Nan	oparticles of Biodegradable Polymers for New-Concept	
	Che	motherapy	105
	Si-Si	nen Feng	
	4.1	Nanoparticle Formulation and Characterization	110
		4.1.1 Nanoparticle Formulation	110
		4.1.2 Nanoparticle Characterization	111
	4.2	In vitro Experiments	115
		4.2.1 In vitro Drug Release	115
		4.2.2 Cell Line Experiments	116
	4.3	Animal Tests and Clinical Trials	118
		Expert Opinion	120
	4.5	Five-Year View	121
5		oparticles of Biodegradable Polymers for Cancer Treatment	129
	Si-Si	nen Feng	
		PART III CHEMOTHERAPEUTIC ENGINEERING: FEASIBILITY	
6		motherapeutic Engineering: Vitamin E TPGS-Emulsified	
		oparticles of Biodegradable Polymers Realized Sustainable	400
		itaxel Chemotherapy for 168 h in vivo	139
		nen Feng, Lingyun Zhao, Zhiping Zhang, Gajadhar Bhakta,	
		Yin Win, Yuancai Dong, and Shu Chien	400
	6.1	Introduction	139

	6.2	metno	ous	141
		6.2.1	Preparation of Nanoparticles	141
		6.2.2	Nanoparticle Characterization	142
		6.2.3	In vitro Cellular Uptake of Nanoparticles	142
		6.2.4	In vitro Cytotoxicity	143
		6.2.5	In vivo Pharmacokinetics	143
		6.2.6	Xenograft Model	144
	6.3	Result	ts and Discussions	144
	6.4	Concl	usions	151
P	art IV	Снем	OTHERAPEUTIC ENGINEERING: FURTHER PROOF-OF CONCEPT EXPERIMENTAL R	ESULTS
7	In vi	tro and	l in vivo Investigation on PLA-TPGS Nanoparticles for	
	Cont	rolled	and Sustained Small Molecule Chemotherapy	157
	Zhip	ing Zha	ng, Sie Huey Lee, Chee Wee Gan, and Si-Shen Feng	
	7.1	Introd	duction	157
	7.2	Mater	rials and Methods	159
		7.2.1	Materials	159
		7.2.2	Synthesis of PLA-TPGS Copolymers	159
		7.2.3	Preparation of Paclitaxel-Loaded PLA-TPGS Nanoparticles	160
		7.2.4	Characterization of Nanoparticles	160
			7.2.4.1 Particles size, surface morphology and surface	
			chemistry	160
			7.2.4.2 Drug encapsulation efficiency	160
		7.2.5	In vitro Drug Release	160
		7.2.6	Cellular Uptake	161
		7.2.7	Animal Test	161
			7.2.7.1 Pharmacokinetics and biodistribution	161
			7.2.7.2 Xenograft tumor model	163
	7.3	Result	ts and Discussion	163
		7.3.1	Formulation Optimization	163
		7.3.2	Surface Morphology, Surface Chemistry and in vitro Drug	
			Release	166
		7.3.3	Cellular Uptake of Nanoparticles	168
		7.3.4	Pharmacokinetics	169
		7.3.5	Biodistribution	170
		7.3.6	Xenograft Tumor Model	171
	7.4	Concl	usions	175
8			I in vivo Evaluation of Methoxy Polyethylene	
	-		lactide Nanoparticles for Small-Molecule	
			otherapy	179
			ng and Si-Shen Feng	
	8.1	Introd	luction	179

8.2	Mater	rials and Methods	181
	8.2.1	Materials	181
	8.2.2	Preparation of Paclitaxel-Loaded MPEG-PLA NPs	181
	8.2.3	Particle Size, Surface Morphology and Drug Encapsulation	
		Efficiency	181
	8.2.4	Differential Scanning Calorimetry	182
	8.2.5	In vitro Drug Release	182
	8.2.6	In vitro Cytotoxicity	182
	8.2.7	Cellular Uptake of Fluorescent NPs	183
	8.2.8	In vivo Pharmacokinetic Analysis	183
8.3	Resul	ts and Discussion	184
	8.3.1	Characterization of Paclitaxel-Loaded MPEG-PLA NPs	184
	8.3.2	In vitro Drug Release	185
	8.3.3	DSC	185
	8.3.4	Viability of MCF-7 Cells	186
	8.3.5	In vitro Cellular Uptake of NPs	188
	8.3.6	In vivo Pharmacokinetics Analysis	189
8.4	Concl	usion	191
Poly	ethyler	l Cytotoxicity of Paclitaxel-Loaded Poly(Lactide)—Tocopheryl ne Glycol Succinate Nanoparticles	195
•	-	ing and Si-Shen Feng	
		luction	195
9.2		rials and Methods	197
		Materials	197
		Synthesis and Characterization of PLA-TPGS Copolymers	197
		Formulation of Paclitaxel-Loaded PLA-TPGS NPs	198
	9.2.4	Characterization of NPs	198
		9.2.4.1 Particle size and size distribution	198
		9.2.4.2 Surface charge	198
		9.2.4.3 Surface morphology	199
		9.2.4.4 Drug encapsulation efficiency	199
		9.2.4.5 In vitro drug release	199
	9.2.5		199
		9.2.5.1 Cell culture	199
		9.2.5.2 In vitro cellular uptake of NPs	200
0.0	ъ.	9.2.5.3 In vitro cell viability	000
9.3	Raciil	. 15:	200
		ts and Discussion	201
	9.3.1	Characterization of PLA-TPGS Copolymers	201 201
	9.3.1		201

				Contents	хi
		9.	3.2.2 Surface charge	202	
			3.2.3 Surface morphology	202	
			3.2.4 Drug encapsulation efficiency	203	
			3.2.5 In vitro drug release profile	204	
	(9.3.3 Ce	ellular Uptake of NPs	205	
	(9.3.4 In	vitro Cell Viability of Drug-Loaded NPs	208	
		Conclusi		210	
10		-	s of Poly(চ,ւ-Lactide)/Methoxy Poly(Ethylene		
	Glyc	ol)-Poly(ı	p,L-Lactide) Blends for Controlled Release of Paclitaxe	el 215	
	Yuar	ncai Dong	and Si-Shen Feng		
	10.1	Introd	uction	215	
	10.2	Mater	ials and Methods	217	
			Materials	217	
		10.2.2	Preparation of Paclitaxel-Loaded NPs	217	
		10.2.3	Characterization of Paclitaxel-Loaded NP	218	
			10.2.3.1 Size and zeta potential	218	
			10.2.3.2 Drug encapsulation efficiency	218	
			10.2.3.3 Morphology	218	
			10.2.3.4 Surface chemistry	218	
			10.2.3.5 DSC	219	
			10.2.3.6 In vitro drug release	219	
	10.3	Result	s and Discussion	219	
		10.3.1	Size, ZP, and Drug EE	219	
		10.3.2	Morphology	221	
		10.3.3	Surface Charge	221	
		10.3.4	DSC	223	
			10.3.4.1 In vitro drug release	224	
	10.4	Conclu	isions	225	
11			n vivo Studies on Vitamin E TPGS-Emulsified		
	Poly	(D,L-Lacti	c-co-Glycolic Acid) Nanoparticles for Paclitaxel		
	Forn	nulation		231	
	Khin	Yin Win	and Si-Shen Feng		
	11.1	Introd	uction	231	
	11.2	Materi	ials and Methods	233	
		11.2.1	Materials	233	
		11.2.2	Preparation and Characterization of Nanoparticle	es 233	
		11.2.3	3	234	
		11.2.4	In vivo Pharmacokinetics	234	
	11.3	Result	s and Discussions	235	

11.3.1 Size, Surface Morphology and Zeta-Potential

11.3.2 Surface Chemistry

235

236

		11.3.3	In vitro L	rug Release	237
		11.3.4	In vitro C	ytotoxicity	237
		11.3.5	In vivo Pl	harmacokinetics	239
	11.4	Conclu	sion		240
12	Nano	particles	of Poly(La	ctide)/Vitamin E TPGS Copolymer for Cancer	
	Chem	otherap	y: Synthesi	is, Formulation, Characterization and in vitro	
		Release			245
	Zhipir	ng Zhang	and Si-She	en Feng	
	12.1	Introdu	ıction		245
	12.2	Materia	als and Me	thods	247
		12.2.1	Materials	5	247
		12.2.2	Synthesis	s of PLA-TPGS Copolymer	247
		12.2.3	Characte	rization of PLA-TPGS Copolymer	247
		12.2.4	Preparat	ion of Paclitaxel-Loaded PLA-TPGS	
			Nanopar	ticles	248
		12.2.5	Characte	rization of Drug-Loaded PLA-TPGS	
			Nanopar	ticles	248
			12.2.5.1	Particle size analysis	248
			12.2.5.2	Surface morphology	248
			12.2.5.3	Surface charge	248
			12.2.5.4	Drug encapsulation efficiency	248
			12.2.5.5	Surface chemistry	249
			12.2.5.6	In vitro drug release	249
	12.3	Results	and Discu	ission	249
		12.3.1	Synthesis	s of PLA-TPGS Copolymer	249
		12.3.2	Molecula	r Weight and Molecular Weight Distribution	250
		12.3.3	Size, Size	Distribution and Drug Encapsulation	
			Efficiency	y	252
			12.3.3.1	Drug encapsulation efficiency	254
				Effects of polymeric matrix materials	254
				Effects of mechanical mixing strength	255
		12.3.4	Surface N	Morphology	255
		12.3.5	Zeta Pote	ential	255
		12.3.6	Surface C	Chemistry	255
		12.3.7	In vitro D	Orug Release	258
	12.4	Conclu			258
13	A Nov	vel Contr	olled Relea	ase Formulation for the Anticancer Drug	
-	Paclit	axel (Tax	လါ [®]): PLG/	A Nanoparticles Containing Vitamin E TPGS	263
		and S. S	•		260
	13.1	Introdu	iction		263

	13.2	Materia	als and Met	hods	265
		13.2.1	Materials		265
		13.2.2	Nanoparti	icle Preparation	266
		13.2.3	Encapsula	ition Efficiency	266
		13.2.4	Nanoparti	icle Characterisation	267
			13.2.4.1	Size and size distribution	267
				Morphology	267
				DSC analysis	267
			13.2.4.4	Surface analysis	268
		13.2.5	In vitro re	lease study	268
	13.3		and Discus		268
		13.3.1		ormulation of Nanoparticles for Controlled	
				Paclitaxel	268
		13.3.2		on Optimisation	270
				Morphology of nanoparticles	270
				Particle size and size distribution	270
				Yield and encapsulation efficiency	274
			DSC Analy		276
			Surface A	•	278
			In vitro Re	elease	279
	13.4	Conclu	sions		281
14				tion and in vitro Release of Paclitaxel (Taxol®)	
				colic Acid) Microspheres Prepared by Spray oid/Cholesterol Emulsifiers	285
	-	and S. S.	-	Ju/Cholesteroi Emuismers	203
		Introdi	•		285
			als and Met	hods	287
	11.2		Materials	11043	287
				eres Characterization	288
				ation Efficiency	288
				elease Study	289
	14.3		and Discus		290
	11.0			ere Preparation and Encapsulation	_,,
		11.0.1	Efficiency		290
		14.3.2		Morphology Characteristics of the	
			Microsphe		290
		14.3.3	DSC Analy		293
				ntial Analysis	295
			In vitro Re	-	299
			III VILIO IX		
	14.4	Conclu			302

15	Effects of Emulsifiers on the Controlled Release of Paclitaxel (Taxol $^{\circledR}$)				
	from Nanospheres of Biodegradable Polymers			307	
	Si-Shen Feng and Guofeng Huang				
	15.1	Introdu	ıction		307
	15.2	Materia	als and Me	ethods	310
		15.2.1	Materials	S	310
		15.2.2	Methods		310
			15.2.2.1	Preparation of polymeric nanospheres	310
				Particle characterization	311
			15.2.2.3	In vitro release of paclitaxel	311
			15.2.2.4	Encapsulation efficiency	312
			15.2.2.5	Extraction factor and recovery efficiency	
				measurement	312
	15.3	Results	and Discu	ussion	312
		15.3.1	Effects of	f Various Emulsifiers	313
			15.3.1.1	Surface chemistry	313
			15.3.1.2	Surface morphology	318
			15.3.1.3	Size and encapsulation efficiency	319
			15.3.1.4	In vitro release profile	323
		15.3.2	Effect of	Chain Length and Chain Unsaturation of Lipids	325
			15.3.2.1	Surface chemistry	325
			15.3.2.2	Zeta potential	328
			15.3.2.3	Encapsulation efficiency and size distribution	329
	15.4	Conclu	sions		332
		Pai	RT V С НЕМ	OTHERAPEUTIC ENGINEERING: DRUG TARGETING	
16	Соро	lymer Te	chnology f	or Advanced Nanomedicine	339
	Zhipir	ng Zhang	, Xianglian	g Yang, and Si-Shen Feng	
17	A Stra	ategy for	Precision	Engineering of Nanoparticles of Biodegradable	
	Copo	lymers fo	or Quantita	ative Control of Targeted Drug Delivery	347
	Yutao	Liu, Kai	Li, Bin Liu,	and Si-Shen Feng	
	17.1	Introdu	ıction		347
	17.2	Materia	als and Me	ethods	351
		17.2.1	Materials	S	351
		17.2.2	Preparat	ion of Nanoparticles	351
		17.2.3	_	n Conjugation and Ligand Surface Density	
			Control		352
		17.2.4	Surface (Chemistry Analysis	352
				rization of the Nanoparticles	352
				Particle size and size distribution of the NPs	352
			17.2.5.2		353

			17.2.5.3 Drug load	353	
			17.2.5.4 Particle morphology	353	
		17.2.6	In vitro Drug Release	353	
		17.2.7	Cell Culture	354	
		17.2.8	In vitro Cellular Uptake	354	
		17.2.9	In vitro Cytotoxicity		
		17.2.10) Statistical Analysis	355	
	17.3			355	
			Preparation and Size Characterization of the NPs	355	
			Herceptin Conjugation and Surface Chemistry Analysis	355	
			Control of Ligand Surface Density on NPs Surface	356	
		17.3.4	Characterization of the Docetaxel-Loaded NPs:		
			Before and After Herceptin Conjugation	359	
			Surface Morphology	360	
			In vitro Drug Release Profile	361	
			In vitro Cellular Uptake: Quantitative Study	362	
			In vitro Cellular Uptake: Confocal Microscopy Study	364	
			In vitro Cytotoxicity	366	
		Discus		368 370	
	175	Conclu	sions		
	17.5	Conciu			
18			jugated Nanoparticles of Mixed Lipid Monolayer Shell and		
18	Folic	Acid Con		375	
18	Folic A	Acid Con egradable	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng	375	
18	Folic A Biode Yutao	Acid Con egradablo Liu, Kai Introdu	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng	375	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng action als and Methods	375 378	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng action als and Methods Materials	375 378 378	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng action als and Methods Materials Fabrication of the Nanoparticles	375 378 378 378	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguction als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles	375 378 378 378 379	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguation als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution	375 378 378 378 379 379	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguetion als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE)	375 378 378 378 379 379	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fengulation als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology	375 378 378 378 379 379 379	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguction als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge	375 378 378 378 379 379 379 379	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguction als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry	375 378 378 378 379 379 379 379 379 380	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2 18.2.3	jugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng action als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry Controlled Drug Release	375 378 378 378 379 379 379 379 380 380	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2 18.2.3	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng action als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry Controlled Drug Release Cell Culture	375 378 378 378 379 379 379 379 380 380 380	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2 18.2.3	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and e Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Feng action als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry Controlled Drug Release Cell Culture In vitro Cellular Uptake	375 378 378 378 379 379 379 379 380 380 380 380	
18	Folic A Biode Yutao	Acid Conegradable Liu, Kai Introdu Materia 18.2.1 18.2.2 18.2.3	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguction als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry Controlled Drug Release Cell Culture In vitro Cellular Uptake In vitro Cell Cytotoxicity	375 378 378 378 379 379 379 379 380 380 380 381	
18	Folic A Biode Yutao 18.1 18.2	Acid Conegradable Liu, Kai Introdu Materia 18.2.1 18.2.2 18.2.3 18.2.4 18.2.5 18.2.6 18.2.7 18.2.8	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguetion als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry Controlled Drug Release Cell Culture In vitro Cellular Uptake In vitro Cell Cytotoxicity Statistical Analysis	375 378 378 379 379 379 379 380 380 380 381 381	
18	Folic A Biode Yutao	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2 18.2.3	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fengulation als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry Controlled Drug Release Cell Culture In vitro Cellular Uptake In vitro Cell Cytotoxicity Statistical Analysis and Discussion	375 378 378 379 379 379 379 380 380 380 381 381	
18	Folic A Biode Yutao 18.1 18.2	Acid Con egradable Liu, Kai Introdu Materia 18.2.1 18.2.2 18.2.3	ijugated Nanoparticles of Mixed Lipid Monolayer Shell and Polymer Core for Targeted Delivery of Docetaxel Li, Jie Pan, Bin Liu, and Si-Shen Fenguetion als and Methods Materials Fabrication of the Nanoparticles Characterization of the Nanoparticles 18.2.3.1 Particle size and size distribution 18.2.3.2 Drag encapsulation efficiency (EE) 18.2.3.3 Particle morphology 18.2.3.4 Surface charge 18.2.3.5 Surface chemistry Controlled Drug Release Cell Culture In vitro Cellular Uptake In vitro Cell Cytotoxicity Statistical Analysis	375 378 378 379 379 379 379 380 380 380 381 381	

			18.3.2.1	Particle size, size distribution and drug	
				encapsulation efficiency	383
			18.3.2.2	Surface morphology	384
			18.3.2.3	Surface charge	384
			18.3.2.4	Surface chemistry	384
		18.3.3	In vitro I	Orug Release	385
		18.3.4	In vitro C	Cellular Uptake	386
		18.3.5	In vitro C	Cytotoxicity	389
	18.4	Conclus	sions		391
19	Quan	titative C	Control of	Targeting Effect of Anticancer Drugs Formulated	
				anoparticles of Biodegradable Copolymer Blend	395
				iu, and Si-Shen Feng	
	19.1	Introdu	ıction	-	395
	19.2	Materia	als and Me	thods	398
		19.2.1	Materials	3	398
		19.2.2	Synthesis	s of PLA-TPGS and TPGS-COOH Copolymers	399
		19.2.3	Preparat	ion of Nanoparticles	399
		19.2.4	Hercepti	n Conjugation	400
		19.2.5	Particle S	Size	400
		19.2.6	Surface C	Charge	400
		19.2.7	Surface N	Morphology	400
		19.2.8	Surface C	Chemistry	400
		19.2.9	Surface H	Ierceptin Visualization	401
		19.2.10	Drug Toa	d	401
		19.2.11	Determin	nation of Herceptin Surface Density	401
				Bradford protein assay	401
			19.2.11.2	Fluorescent staining and flow cytometer	
				analysis	401
			Cell Culti		402
		19.2.13		Cellular Uptake Study of the HER2 Conjugated	
			NPs		402
				Qualitative study: confocal microscopy	402
				Quantitative study: microplate reader	402
				Cytotoxicity	402
	19.3		and Discu		403
		19.3.1		rization of PLA-TPGS/TPGS-COOH and	
			, ,	PGS-COOH+TPGS) NPs before and after	400
			-	n Conjugation	403
			19.3.1.1		403
				Surface Charge Surface morphology	403 404
			19.3.1.3	Surface morphology	404

			19.3.1.4	Drug load	405
			19.3.1.5	Surface chemistry	406
			19.3.1.6	Surface herceptin visualization	406
		19.3.2		cation of Surface Antibody Density	407
			19.3.2.1	Bradford assay	407
			19.3.2.2	Fluorescent labeling and flow cytometer	
				analysis	409
		19.3.3	In vitro (Cellular Uptake: Quantitative Study	411
		19.3.4	In vitro (Cellular Uptake: Confocal Microscopy Study	411
		19.3.5	In vitro (Cytotoxitity	413
	19.4	Conclu	sion		414
20	Trastı	uzumab-	Functional	lized Nanoparticles of Biodegradable	
				Delivery of Docetaxel	419
	-	-	and Si-Shei		
	20.1	-	als and Me	-	421
		20.1.1	Synthesi	s of PLA-TPGS and TPGS-COOH Copolymer	422
				ion of NPs	422
			•	rization of NPs Size and Size Distribution	423
			20.1.3.1	Surface charge	425
				Surface morphology	425
				Drug EE	425
				Surface chemistry	425
			20.1.3.5	SDS-PAGE	425
			20.1.3.6	In vitro docetaxel-release kinetics	426
		20.1.4	Cell Culti	ure	426
		20.1.5	In vitro (Cellular Uptake Study Qualitative Study: CLSM	426
			20.1.5.1	Quantitative study: Microplate reader	
				analysis	427
		20.1.6	In vitro (Cytotoxicity	427
	20.2	Results	and Discu	ussion	428
		20.2.1	Physicoc	hemical Properties of NPs Size and Size	
			Distribut		428
				Surface charge	429
				Surface morphology of NPs	429
				Drug EE	429
				Surface chemistry	430
				SDS-PAGE	431
				In vitro drug release kinetics	431
		20.2.2		Uptake of NPs Qualitative Study	434
				Quantitative study	434
		20.2.3		cytotoxicity	437
	20.3	Conclu	cion		440

21	Folate	e-Decorated Poly(Lactide- <i>co</i> -Glycolide)-Vitamin E TPGS						
	Nanoparticles for Targeted Drug Delivery							
	Zhiping Zhang, Sie Huey Lee, and Si-Shen Feng							
	21.1	21.1 Introduction						
	21.2	Materials and Methods	449					
		21.2.1 Materials	449					
		21.2.2 Synthesis of DOX-PLGA-TPGS	449					
		21.2.3 Synthesis of TPGS-FOL	451					
		21.2.4 Characterization of the Synthesized Conjugates	452					
		21.2.5 Preparation of DOX-Loaded NPs	452					
		21.2.6 Characterization of the DOX-Loaded NPs	452					
		21.2.7 Surface Chemistry	453					
		21.2.8 In vitro Drug Release Kinetics	453					
		21.2.9 In vitro Cytotoxicity	453					
		21.2.10 In vitro Cellular Uptake of NPs	453					
		21.2.11 Statistical Analysis	454					
	21.3	Results and Discussion	454					
		21.3.1 Characterization of the Synthesized Conjugates	454					
		21.3.2 Characterization of DOX-Loaded NPs	455					
		21.3.3 Surface Chemistry	457					
		21.3.4 In vitro Drug Release	458					
		21.3.5 In vitro Cytotoxicity	458					
		21.3.6 In vitro Cellular Uptake of NPs	460					
	21.4	Conclusion	463					
22	_	d-Conjugated Nanoparticles of Biodegradable Polymers for ted Delivery of Imaging and Therapeutic agents to Biological						
	Cells	γ	467					
	Yu Mi	, Yutao Liu, Yajun Quo, and Si-Shen Feng						
		Herceptin®-Conjugated Nanocarriers for Targeted Imaging						
		and Treatment of HER2-Positive Cancer	467					
	22.2	Benefit of Anti-HER2-Coated Paclitaxel-Loaded						
		Immuno-Nanoparticles in the Treatment of Disseminated						
		Ovarian Cancer: Therapeutic Efficacy and Biodistribution						
		in Mice	469					
	22.3	Targeted Near-Infrared Quantum Dot-Loaded Micelles for						
		Cancer Therapy and Imaging	470					
	22.4							
		HER2-Targeting Liposomes	471					
	22.5	Nanoconjugation Modulates the Trafficking and Mechanism of						
		Antibody-Induced Receptor Endocytosis	472					

23	23 Formulation of Docetaxel by Folic Acid-Conjugated D-α-Tocopheryl Polyethylene Glycol Succinate 2000 (Vitamin E TPGS _{2k}) Micelles for							
	Targe	ted and	ed and Synergistic Chemotherapy					
	Yu Mi	, Yutao L	u, and Si-Shen Fer	ng				
		Introdu			475			
	23.2	Materia	ls and Methods	and Methods				
		23.2.1	Materials		478			
		23.2.2	Synthesis of TPC	S_{2k} and TPGS ₃₃₅₀ -FOL	478			
			Preparation of M		479			
		23.2.4	Characterization	of TPGS _{2k} Micelles	479			
			23.2.4.1 Micell	e size and size distribution	479			
			23.2.4.2 Drug e	encapsulation efficiency	479			
			23.2.4.3 Determ	nination of the critical micelle				
			conce	ntration	481			
		23.2.5	Controlled Drug	Release	481			
		23.2.6	Cell Culture		481			
		23.2.7	In vitro Cellular	Uptake	481			
		23.2.8	In vitro Cell Cyto	otoxicity	482			
	23.3	Results	and Discussion		482			
		23.3.1	Characterization	of TPGS _{2k} Micelles and FA Micelles	482			
			23.3.1.1 Micell	e size and size distribution	482			
			23.3.1.2 Drug e	encapsulation efficiency	483			
			23.3.1.3 CMC o	f TPGS _{2k}	484			
		23.3.2	In vitro Drug Re	lease	484			
		23.3.3	In vitro Cellular	Uptake of Micelles	486			
		23.3.4	In vitro Cytotoxi	city	489			
	23.4	Conclu	ions		492			
			CB. Pr III	ti situ Barani				
24	_		-	_	407			
				vanoparticles	497			
			-		407			
	24.2							
				paragraphics of DLA TDCS	499			
		24.2.2	•	iaracterization of PLA-1PGS	400			
		2422		C COOL and FOL NIL				
					500			
		24.2.4			EOO			
		2425		· 	300			
		24.2.5			F01			
24	23.4 Targe Poly(I Jie Pa 24.1	23.2.6 23.2.7 23.2.8 Results 23.3.1 23.3.2 23.3.3 23.3.4 Conclu ted Deliv Lactide)- in and Si- Introdu Materia 24.2.1 24.2.2	Cell Culture In vitro Cellular In vitro Cell Cyto and Discussion Characterizatior 23.3.1.1 Micell 23.3.1.2 Drug 6 23.3.1.3 CMC o In vitro Drug Re In vitro Cellular In vitro Cytotoxi ions ery of Paclitaxel U -Vitamin E TPGS I Shen Feng ction ls and Methods Materials Synthesis and Cl Copolymer Synthesis of TPC Formulation of I Folate-Decoration Characterization Folate Decoration	Uptake otoxicity I of TPGS _{2k} Micelles and FA Micelles are size and size distribution encapsulation efficiency of TPGS _{2k} lease Uptake of Micelles city Using Folate-Decorated Nanoparticles I aracterization of PLA-TPGS I S-COOH and FOL-NH ₂ Paclitaxel-Loaded NPs with on of Paclitaxel-Loaded NPs with	481 481 482 482 482 483 484 484 486			

			24.2.5.2 Surface charge	501
			24.2.5.3 Surface morphology	501
			24.2.5.4 Drug encapsulation efficiency	501
		24.2.6	Surface Chemistry	503
		24.2.7	In vitro Drug Release Kinetics	503
		24.2.8	Cell Cultures	503
		24.2.9	In vitro Cellular Uptake of NPs	503
		24.2.10	In vitro Cytotoxicity	504
	24.3	Results	s and Discussion	505
		24.3.1	Characterization of PLA-TPGS Copolymers	505
		24.3.2	Characterization of Folate-Decorated NPs	505
			24.3.2.1 Size and size distribution	505
			24.3.2.2 Surface charge	506
			24.3.2.3 Surface morphology	507
			24.3.2.4 Drug encapsulation efficiency	507
		24.3.3	Surface Chemistry	508
		24.3.4	In vitro Drug Release	508
		24.3.5	In vitro Cellular Uptake of NPs	509
		24.3.6	In vitro Cytotoxicity	511
	24.4	Conclu	sion	513
25	Multi	function	al Nanoparticles of Biodegradable Copolymer Blend for	
	Cance	er Diagno	osis and Treatment	521
	Jie Pa	n, Yutao	Liu, and Si-Shen Feng	
	25.1	Materia	als and Methods	523
			Materials	523
		25.1.2	Synthesis of TPGS-COOH	524
		25.1.3	Synthesis of FOL-NH ₂	524
		25.1.4	Preparation of QD/Docetaxel-Loaded	
			PLGA/TPGS-COOH NPs	524
		25.1.5	Formulation of FOL-Conjugated QD/Docetaxel-Loaded	
			PLGA/TPGS-COOH NPs	524
			•	
		25.1.6	Characterization of TC NPs and FD NPs Particle Size	
		25.1.6	Characterization of TC NPs and FD NPs Particle Size and Size Distribution	525
		25.1.6	Characterization of TC NPs and FD NPs Particle Size and Size Distribution 25.1.6.1 Drug encapsulation and loading efficiency	526
		25.1.6	Characterization of TC NPs and FD NPs Particle Size and Size Distribution 25.1.6.1 Drug encapsulation and loading efficiency 25.1.6.2 Surface charge	526 526
		25.1.6	Characterization of TC NPs and FD NPs Particle Size and Size Distribution 25.1.6.1 Drug encapsulation and loading efficiency 25.1.6.2 Surface charge 25.1.6.3 Surface morphology	526 526 526
			Characterization of TC NPs and FD NPs Particle Size and Size Distribution 25.1.6.1 Drug encapsulation and loading efficiency 25.1.6.2 Surface charge 25.1.6.3 Surface morphology 25.1.6.4 Surface chemistry	526 526 526 526
		25.1.7	Characterization of TC NPs and FD NPs Particle Size and Size Distribution 25.1.6.1 Drug encapsulation and loading efficiency 25.1.6.2 Surface charge 25.1.6.3 Surface morphology 25.1.6.4 Surface chemistry In vitro Drug Release	526 526 526 526 527
		25.1.7	Characterization of TC NPs and FD NPs Particle Size and Size Distribution 25.1.6.1 Drug encapsulation and loading efficiency 25.1.6.2 Surface charge 25.1.6.3 Surface morphology 25.1.6.4 Surface chemistry	526 526 526 526

		25.1.9	QD Encapsulation and Loading Efficiency O Cell Line Experiment Cell Culture				
				25.1.10.1 In vitro Cellular Uptake of NPs 25.1.10.2 In vitro Therapeutic Effect and Targeting			
			25.1.10.2				
				Effects	529		
	25.2	Results	and Discu	ssion	529		
		25.2.1	Characte	rization of QD/Docetaxel-Loaded NPs			
			Particle S	ize and Size Distribution	529		
			25.2.1.1	Drug encapsulation and loading efficiency	529		
			25.2.1.2	Surface charge	531		
			25.2.1.3	Surface morphology	531		
			25.2.1.4	Surface chemistry	531		
			25.2.1.5	In vitro drug release	531		
		25.2.2	Photophy	rsical Characterization of FD NPs	533		
				Fluorescent images	533		
				Emission spectra	533		
				QD encapsulation and loading efficiency	534		
		25.2.3	In vitro E	valuation	534		
			25.2.3.1	In vitro cellular uptake of NPs	534		
				In vitro cytotoxicity	537		
	25.3	Conclu	sion		539		
	_						
26	_	_		ancer Cells by Folate-Decorated, Quantum	- 4-		
			-	cles of Biodegradable Polymers	547		
		<i>n ana Si-</i> Introdi	Shen Feng		547		
			action als and Me	thodo	5 4 7		
	20.2		ais and Me Materials				
					550 550		
				of TPGS-COOH and Folate-NH ₂ ion of QDs-Loaded NPs with Folate	330		
		20.2.3		on and Free QDs	551		
		26.2.4		rization of QDs-Loaded NPs with Folate	331		
		20.2.4	Decoration	•	553		
				Particle size and size distribution	553		
				Surface charge	553		
				Surface morphology	553		
				Emission spectrum	553		
				QDs encapsulation efficiency	553		
		26.2.5		• •	554		
				Experiment	554		
		20.2.0		Cell cultures	554		
				In vitro cellular uptake of NPs	554		
			40.4.0.4	III VIGO CCIIGIGI ADGANC ULIVI 3	ノンゴ		

		26.2.6.3	In vitro cytotoxicity	555
26.3	Results	and Discu	ssion	555
	26.3.1	Character	rization of QDs-Loaded NPs with Folate	
		Decoration	on	555
		26.3.1.1	Size and size distribution	555
		26.3.1.2	Surface charge	555
		26.3.1.3	Surface morphology	556
		26.3.1.4	Emission spectrum	556
		26.3.1.5	QDs encapsulation efficiency	556
	26.3.2	Surface C	hemistry	557
	26.3.3	In vitro ce	ellular uptake of NPs	557
	26.3.4	In vitro cy	ytotoxicity	558
26.4	Conclu	sion		562
Multi	function	al Poly(ɒ,ւ-	Lactide- <i>co</i> -Glycolide)/Montmorillonite	
(PLG	A/MMT)	Nanopartio	cles Decorated by Trastuzumab for Targeted	
Chem	otherap	y of Breast	Cancer	567
Bingf	eng Sun,	Balu Rango	anathan, and Si-Shen Feng	
27.1	Introdu	ıction		567
27.2	Materia	als and Me	thods	570
	27.2.1	Materials		570
	27.2.2	Preparati	on of Nanoparticles	570
	27.2.3	Character	rization of NPs	570
		27.2.3.1	Particle size and size distribution	570
		27.2.3.2	Surface morphology	571
		27.2.3.3	Surface charge	571
		27.2.3.4	Drug encapsulation efficiency	571
		27.2.3.5	Thermal gravimetric analysis	571
	27.2.4	Surface C	hemistry Analysis	571
	27.2.5	SDS-PAGE	E Analysis	572
	27.2.6	In vitro D	rug Release Kinetics	572
	27.2.7	Cell Cultu	res	572
	27.2.8	In vitro C	ellular Uptake of NPs	573
	27.2.9	In vitro C	ytotoxicity	573
27.3	Results	and Discu	ssions	574
	27.3.1	Size, Size	Distribution and Drug Encapsulation	
				574
	27.3.2	-		574
	27.3.3			576
	27.3.4		•	576
	27.3.5		· · · · · · · · · · · · · · · · · · ·	576
	27.3.6	-		577
	26.4 Multi (PLGA Chem Bingfo 27.1 27.2	26.3.2 26.3.3 26.3.4 26.4 Conclu Multifunction (PLGA/MMT) Chemotherap Bingfeng Sun, 27.1 Introdu 27.2 Materia 27.2.1 27.2.2 27.2.3 27.2.4 27.2.5 27.2.6 27.2.7 27.2.8 27.2.9 27.3 Results 27.3.1 27.3.2 27.3.3 27.3.4 27.3.5	26.3 Results and Discus 26.3.1.1 Character Decoration 26.3.1.1 26.3.1.2 26.3.1.3 26.3.1.4 26.3.1.5 26.3.2 Surface Conclusion 26.3.4 In vitro conclusion 27.4 Introduction 27.2 Materials 27.2.1 Materials 27.2.1 Materials 27.2.2 Preparati 27.2.3 Character 27.2.3.1 27.2.3.2 27.2.3.3 27.2.3.4 27.2.3.5 27.2.4 Surface Conclusion 27.2 Results and Discus 27.3.1 Size, Size Efficiency 27.3.2 Surface Materials 27.2.9 In vitro Conclusion 27.2 Surface Conclusion 27.2 Surface Conclusion 27.2.3 Surface Conclusion 27.3.3 Surface Conclusion 27.3.4 Surface Conclusion 27.3.5 Stability Co	Multifunctional Poly(p,t-Lactide-co-Glycolide)/Montmorillonite (PLGA/MMT) Nanoparticles Decorated by Trastuzumab for Targeted Chemotherapy of Breast Cancer Bingfeng Sun, Balu Ranganathan, and Si-Shen Feng 27.1 Introduction 27.2 Materials and Methods 27.2.1 Materials 27.2.2 Preparation of Nanoparticles 27.2.3 Characterization of NPs 27.2.3.1 Particle size and size distribution 27.2.3.2 Surface morphology 27.2.3.3 Surface charge 27.2.3.4 Drug encapsulation efficiency 27.2.3.5 Thermal gravimetric analysis 27.2.5 SDS-PAGE Analysis 27.2.6 In vitro Drug Release Kinetics 27.2.7 Cell Cultures 27.2.8 In vitro Cellular Uptake of NPs 27.2.9 In vitro Cytotoxicity 27.3 Results and Discussions 27.3.1 Size, Size Distribution and Drug Encapsulation Efficiency 27.3.2 Surface Morphology 27.3.3 Surface Charge 27.3.4 Surface Chemistry 27.3.5 Stability of HER2 Antibody

Contents | xxiii

	29.2	Materia	als and Met	thods	625
		29.2.1	Materials		625
		29.2.2	Preparati	on of Succinoylated TPGS	625
		29.2.3	Conjugati	on of Doxorubicin to TPGS	626
		29.2.4	Character	rization of TPGS-DOX Conjugate	626
		29.2.5	In vitro R	elease of DOX from the Conjugate	626
		29.2.6	Cell Cultu	re	627
		29.2.7	In vitro Co	ell Uptake of TPGS-DOX Conjugate	627
		29.2.8	Confocal l	Laser Scanning Microscopy	627
		29.2.9	In vitro Cy	ytotoxicity	627
		29.2.10	In vivo Ph	armacokinetics	629
		29.2.11	Biodistrib	oution	629
		29.2.12	Statistics		630
	29.3	Results			630
		29.3.1	Character	rization of TPGS-DOX Conjugate	630
		29.3.2	In vitro R	elease of DOX from the Conjugate	631
		29.3.3	In vitro Co	ell Uptake of the Conjugate	632
		29.3.4	In vitro Cy	ytotoxicity	633
		29.3.5	In vivo Ph	armacokinetics	637
		29.3.6	Biodistrib	oution	638
	29.4	Discus	sion		640
	29.5	Conclu	sions		642
		Part \	/III CHEMO	THERAPEUTIC ENGINEERING: ORAL CHEMOTHERAPY	
20	N				640
30				High Performance Magnetic Nanoparticles g, and Si-Shen Feng	649
	5.1.0				
31				Derivative/Montmorillonite Nanoparticle I Delivery of Docetaxel	655
				nneerselvan Anitha, Chee Wee Gan,	033
		venyou Z		meerselvan Amtha, Chee Wee Gan,	
		Introdi			655
			als and Met	thods	658
	31.2		Materials		658
				and Characterization of PLA-TPGS	030
		31.2.2	,		658
		31.2.3	Copolyme		
		31.2.3	-	on of Docetaxel- or Coumarin 6-Loaded NPs rization of Drug-Loaded NPs	658 659
		31.2.4		Size and zeta potential	659
				Surface morphology	659
				Drug encapsulation efficiency	659
			31.2.4.4	MMT content analysis by TGA	660

			31.2.4.5	Physical status of Docetaxel and MMT in the	
				NPs	660
			31.2.4.6	In vitro drug release	660
		31.2.5	Cell Culti		661
			31.2.5.1	Caco-2 and MCF-7 cell uptake of fluorescent	
				NPs	661
			31.2.5.2	Confocal laser scanning microscopy	661
			31.2.5.3	In vitro cytotoxicity of Docetaxel-loaded NPs	661
		31.2.6	In vivo P	harmacokinetics	662
	31.3	Results	and Discu	issions	663
		31.3.1	Characte	rization of PLA-TPGS Copolymer	663
		31.3.2	Characte	rization of Drug-Loaded NPs	663
			31.3.2.1	Size, zeta potential, MMT content, and drug	
				encapsulation efficiency	663
				Surface morphology	665
			31.3.2.3	Physical status of Docetaxel and MMT in the	
				nanoparticles	666
			31.3.2.4	In vitro drug release	666
		31.3.3	Uptake o	f Coumarin 6-Loaded NPs by Caco-2 and	
			MCF-7 Ce	ells	667
		31.3.4	Confocal	Laser Scanning Microscopy	670
		31.3.5	In vitro C	Cell Viability of NPs	671
		31.3.6	In vivo P	harmacokinetics	671
	31.4	Conclu	sion		675
32	Enhai	nced Ora	l Bioavaila	bility of Paclitaxel Formulated in Vitamin	
	E-TPG	S Emuls	ified Nano	particles of Biodegradable Polymers: in vitro	
	and i	n vivo St	udies		681
			and Si-She	n Feng	
		Introdu			681
	32.2	Experi	mental		683
		32.2.1	Materials	S	683
		32.2.2	Preparat	ion and Characterization of NPs	684
		32.2.3	In vitro C	ytotoxicity	685
				harmacokinetics	685
		32.2.5	HPLC As:	say	686
		32.2.6	Statistica	ıl Analysis	686
	32.3	Results	and Discu		686
		32.3.1		Surface Morphology, and Surface Charge	686
		32.3.2	In vitro	Drug Release Profile	687
				Cytotoxicity	690
		32.3.4	Oral Una	vailability	692
	32.4	Conclu	sion		695

33	Self-Assembled Nanoparticles of Poly(Lactide)-Vitamin E TPGS					
	Copo	Copolymers for Oral Chemotherapy				
	Zhiping Zhang and Si-Shen Feng					
	33.1	1 Introduction				
	33.2	Materia	als and Me	thods	701	
		33.2.1	Materials	S	701	
		33.2.2	Preparat	ion of Paclitaxel-Loaded PLA-TPGS		
			Nanopar	ticles	701	
		33.2.3		rization of Nanoparticles	702	
				Particle size and surface morphology	702	
				Drug encapsulation efficiency	702	
				DSC analysis	702	
				In vitro drug release	702	
		33.2.4		Experiment	703	
				Cell culture	703	
				In vitro cellular uptake of nanoparticles	703	
			33.2.4.3	In vitro cytotoxicity of paclitaxel-loaded		
				nanoparticles	704	
		33.2.5		ıl Analysis	704	
	33.3		and Discu		704	
		33.3.1		hemical Properties of Nanoparticles	704	
			33.3.1.1	Size, size distribution, and drug		
				encapsulation efficiency	704	
				Surface morphology of nanoparticles	705	
				DSC analysis	705	
		33.3.2		nvestigation	705	
				In vitro drug release	705	
				Cellular uptake of nanoparticles	706	
				Cytotoxicity of nanoparticles	709	
	33.4	Conclu	sion		710	
34	Effect	s of Part	icle Size aı	nd Surface Coating on Cellular Uptake of		
				for Oral Delivery of Anticancer Drugs	715	
	-		nd Si-Shen			
	34.1	Introdu	ıction		715	
	34.2	Experi	mental Me	thods	717	
		34.2.1			717	
		34.2.2	Preparat	ion of Nanoparticles	717	
		34.2.3	_	rization of Nanoparticles	718	
			34.2.3.1	Size and size distribution	718	
			34.2.3.2	Surface morphology	718	
			34.2.3.3	Surface charge	719	

	34.2.4	In vitro Release of Fluorescent Markers from			
		Nanopar	ticles	719	
	34.2.5	Cell Cult	are	719	
	34.2.6	Nanopar	ticle Uptake by Caco-2 Cells	719	
		34.2.6.1	Quantitative studies	719	
		34.2.6.2	Qualitative studies	720	
34.3	Results	s and Discı	assion	721	
	34.3.1	Physicoc	hemical Properties of Nanoparticles	721	
		34.3.1.1	Size and size distribution	721	
		34.3.1.2	Morphology of nanoparticles	721	
		34.3.1.3	Surface charge of nanoparticles	722	
		34.3.1.4	In vitro fluorescent marker release	722	
	34.3.2	_	ike of Nanoparticles	723	
		34.3.2.1	Effect of particle surface coating, incubation		
			time and temperature	723	
		34.3.2.2	Effect of particle size and concentration	725	
		34.3.2.3	Confocal microscopy	727	
		34.3.2.4	Cryo-SEM and TEM	729	
34.4	Conclu	sions		730	
		and Si-She	n Feng	735	
35.1	Introduction				
35.2	Materi	als and Me	ethods	737	
	35.2.1	Material	S	737	
	35.2.2	-	ion of Paclitaxel-Loaded or Coumarin		
			d PLGA/MMT Nanoparticles	737	
	35.2.3		Zeta Potential	738	
		_	capsulation Efficiency	738	
			ntent Analysis by TGA	738	
		Morphol		738	
			Orug Release	739	
			Status of Paclitaxel and MMT	739	
			nd HT-29 Cell Uptake of Nanoparticles	739	
			Laser Scanning Microscopy	740	
35.3		s and Disci		740	
	35.3.1		a Potential, MMT Content, and Drug		
	0500	-	lation Efficiency	740	
	35.3.2		Morphology	742	
	35.3.3		Orug Release	742	
	35.3.4		Status of Paclitaxel and MMT in the	74	
		Nanopar	ticies	744	

		35.3.5	-	f Coumarin 6-Loaded PLGA/MMT	
			Nanopar	ticles by Caco-2 and HT-29 Cells	744
		35.3.6	Confocal	Laser Scanning Microscopy	748
	35.4	Conclu	sions		748
		Part IX	Снемотне	RAPEUTIC ENGINEERING: DRUG DELIVERY ACROSS THE	
				Blood-Brain Barrier	
36				ication on Delivery Efficiency of Biodegradable	
		•		e Blood–Brain Barrier	755
				and Si-Shen Feng	
	36.1		als and Me		758
		36.1.1	Material	S	758
		36.1.2	Preparat	ion of NPs	758
		36.1.3	Characte	rization of NPs Size and Size	
			Distribut		759
				Surface Charge	759
			36.1.3.2	Surface Morphology	759
				Encapsulation Efficiency	760
			36.1.3.4	In vitro Release	760
		36.1.4	Cell Cult	ure	760
		36.1.5	In vitro (Cellular Uptake of NPs Qualitative Study:	
			Confocal	Laser Scanning Microscopic	760
			36.1.5.1	Quantitative Study: Cellular Uptake	761
			36.1.5.2	In vitro Cell Cytotoxicity	761
		36.1.6	In vivo S	tudy	762
				reparation	763
	36.2		and Disci	•	763
		36.2.1	NPs Chai	racterization Size and Size Distribution	763
			36.2.1.1	Surface charge	764
				Surface morphology	765
				Encapsulation efficiency (%)	765
				In vitro release	766
		36.2.2		Uptake Efficiency: MDCK Cells	767
		00.2.2		Qualitative and quantitative study	767
		36.2.3	In vivo A		770
		50.2.5		Biodistribution	770
				Fluorescence microscopic analysis	, , 0
			30.2.3.2	of brain	773
		3624	In vitro (Cytotoxicity	773
	363	Conclu		2) COUNCILY	777
			sion Perspecti	NA.	778
	50.4	ruture	i ei shecii	v C	//0

37	Polyethylene Glycol Succinate Diblock Copolymer for Targeted Drug					
	Delivery across the Blood–Brain Barrier				785	
			n and Si-Sh	en Feng		
	37.1	Introdu	ıction		785	
	37.2	Materia	als and Me	ethods	788	
		37.2.1	Material	S	788	
		37.2.2	Methods		789	
			37.2.2.1	Preparation of nanoparticles	789	
			37.2.2.2	Surface modification of nanoparticles with		
				human transferrin	789	
			37.2.2.3	Particle size and surface morphology	789	
			37.2.2.4	Surface charge and surface chemistry	790	
			37.2.2.5	Drug encapsulation efficiency	790	
				Cellular uptake	790	
			37.2.2.7	Ex vivo biodistribution of nanoparticles	791	
			37.2.2.8	Cytotoxitity of the nanoparticles		
				formulations	792	
			Statistica	ıl Analysis	793	
	37.3	Results	and Disci	assion	793	
		37.3.1	Nanopar	ticle Formulations	793	
		37.3.2	Cellular	Uptake	796	
			37.3.2.1	Confocal laser scanning microscopy	796	
			37.3.2.2	96-well plates technique	797	
				Biodistribution of Nanoparticles	798	
		37.3.4	Cytotoxic	city of Nanoparticles Formulations	801	
	37.4	Conclu	sion		803	
		PART	Х Снемот	HERAPEUTIC ENGINEERING: MULTIMODAL IMAGING		
38	Nano	technolo	gy for Mu	Itimodal Imaging	811	
	Yutac	Liu, Yu I	Mi, and Si-S	Shen Feng		
39	Multi	modal T	umor Imag	ring by Iron Oxides and QDs Formulated in		
			noparticles		819	
	Yang	Fei Tan, I	Prashant C	handrasekharan, Dipak Maity,		
	Cai Xi	an Yong,	Kai-Hsian	g Chuang, Ying Zhao, Shu Wang,		
		_	Si-Shen Fe	ng		
	39.1	Introdu	ıction		819	
	39.2	Materia	als and Me	ethods	822	
		39.2.1	Material	S	822	
		39.2.2	Flocculat	cion of QDs	822	
		39.2.3	Formula	tion of ODs and IOs-Loaded NPs	823	

		39.2.4	Characte	rization of QDs and IOs-Loaded NPs	823
			39.2.4.1	Particle size and size distribution	823
			39.2.4.2	Surface charge	823
			39.2.4.3	TEM analysis	823
			39.2.4.4	QDs and IOs encapsulation efficiency	824
		39.2.5	Cell Line	Experiment	824
			39.2.5.1	Cell cultures	824
			39.2.5.2	In vitro cellular uptake of NPs	824
			39.2.5.3	In vitro cytotoxicity	825
		39.2.6	Animal S	tudy	825
				Tumor Imaging	826
				Tumor imaging (fluorescent imaging)	826
				Biodistribution	826
	39.3	Results	and Discu		827
		39.3.1		rization of QDs and IOs-Loaded	
			Nanopar		827
				Size and size distribution	827
				Surface charge	827
				TEM analysis	827
				QDs and IO encapsulation efficiency	828
		39.3.2		Experiment	828
				In vitro cellular uptake of NPs	828
				In vitro cytotoxicity	830
			Animal S	tudy	831
	39.4	Conclu	sion		837
40			-	pheryl-co-Poly(Ethylene Glycol) 1000 Succinate)	
		_	-	netic Iron Oxide Nanoparticles for Enhanced	
			py and MR		841
				an, Dipak Maity, Cai Xian Yong,	
		_	_	Ding, and Si-Shen Feng	
		Introdu			841
	40.2		als and Me	· · · · · · · · · · · · · · · · · · ·	843
			Materials		843
		40.2.2	•	s and Characterization of IOs-Loaded	
			Micelles		844
		40.2.3	ICP-MS A		844
		40.2.4	•		844
		40.2.5		ility Assay	844
		40.2.6		nation of SAR Value and Cell Hyperthermia	845
		40.2.7	•	tive and Qualitative Cell Uptake Study	846
		40.2.8	Magnetic	Resonance Properties and in vivo MRI	846

				Contents
			40.2.8.1 Calculation of relaxivity	847
			40.2.8.2 Xenograft model and in vivo MRI	847
	40.3		s and Discussion	847
			Characterization of Magnetic Micelles	847
			Magnetic Property	849
			Cell Viability	851
			Magnetic Hyperthermia	852
			Cellular Uptake	854
		40.3.6		855
	40.4	Conclu	sion	858
41		-	gnetic Iron Oxide—Loaded Poly(Lactic Acid)-p-α-	
	-		olyethylene Glycol 1000 Succinate Copolymer	063
		-	s as MRI Contrast Agent	863
			rran Prashant, Maity Dipak, Chang-Tong Yang,	
		Introdi	uang, Ding Jun, and Si-Shen Feng	863
			als and Methods	866
	41.2		Materials	866
			Synthesis of PLA-TPGS polymer	866
			Synthesis of I CA-11 do polymer Synthesis of IOs	866
			Preparation of IOs-Encapsulated Polymeric	000
		41.2.4	Nanoparticles	867
		4125	X-Ray Photoelectron Spectroscopy	867
			ICP-MS Analysis	867
			Magnetic Property of IOs-PNPs	868
			In vitro Cytotoxicity	868
		41.2.9	•	868
			41.2.9.1 Quantitative evaluation	868
			41.2.9.2 Qualitative analysis	869
		41.2.10	•	869
			41.2.10.1 Calculation of relaxivity	869
			41.2.10.2 In vivo MRI study	869
	41.3	Results	s and Discussion	870
		41.3.1		870
		41.3.2		871
		41.3.3	Synthesis of IOs-Encapsulated Polymeric	
			Nanopartides	871
		41.3.4	-	875
		41.3.5		876
		41.3.6	•	877
		41.3.7	· ·	878

			41.3.7.1	Quantitative investigation	878
			41.3.7.2	Qualitative investigation	878
		41.3.8	In vivo M	IRI	880
			41.3.8.1	Relaxivity studies	880
			41.3.8.2	In vivo liver clearance	880
			41.3.8.3	In vivo tumor MRI	881
	41.4	Conclu	sion		882
42				zation, and in vitro Evaluation of Quantum Dots	
				Vitamin E TPGS Nanoparticles for Cellular and	
		cular Ima			887
			_	i-Shen Feng	
	42.1	Introdu			887
	42.2		als and Me		891
			Materials		891
			-	s of PLA-TPGS Copolymer	891
		42.2.3	_	ion of QDs-Loaded PLA-TPGS NPs and	
			MAA-Coa	•	891
		42.2.4		rization of QDs-Loaded PLA-TPGS NPs	892
				Particle size analysis	892
			42.2.4.2	Surface morphology	892
			42.2.4.3	Surface chemistry of QDs-loaded PLA-TPGS	
				NPs	893
		42.2.5	Photophy	ysical Characterization	893
			42.2.5.1	Fluorescent images	893
			42.2.5.2	Emission Spectra	893
			42.2.5.3	The photostability	893
		42.2.6	QDs Enca	apsulation Efficiency	894
		42.2.7	Cell Line	Experiment	894
			42.2.7.1	Cell culture	894
			42.2.7.2	In vitro cellular uptake of QDs-loaded	
				PLA-TPGS NPs	894
			42.2.7.3	In vitro cytotoxicity of QDs-loaded PLA-TPGS	
				NPs	895
	42.3	Results	and Discu	ıssion	895
		42.3.1	Characte	rization of the PLA-TPGS Copolymer	895
				rization of QDs-Loaded PLA-TPGS NPs	895
				Size and size distribution	895
			42.3.2.2	Surface morphology	896
			42.3.2.3	- 5	
				NPs	897
		1222	Dhotoph	vaigal Characterization	900

			42.3.3.1	Fluorescent colors and emission spectra	899
			42.3.3.2	Photostability	901
		42.3.4	QDs Enc	apsulation Efficiency	902
		42.3.5	In vitro I	Evaluation	902
			42.3.5.1	Cellular uptake of nanoparticles	902
			42.3.5.2	In vitro cytotoxicity of QDs-loaded	
				PLA-TPGS NPs	903
	42.4	Conclu	sion		905
43	Form	ulation o	of Superpa	ramagnetic Iron Oxides by Nanoparticles of	
	Biode	gradable	e Polymers	for Magnetic Resonance Imaging	911
	Yan V	Vang, Yee	Woon Ng	, Yan Chen, Borys Shuter, Jiabao Yi, Jun Ding,	
	Shih-	chang W	ang, and S	i-Shen Feng	
	43.1	Introdu	ıction		911
	43.2	Results	and Disci	ussion	914
		43.2.1	Physicoc	hemical Characteristics of IO-loaded	
			PLGA-ml	PEG NPs	914
			43.2.1.1	Particle size and iron loading	914
			43.2.1.2	Surface morphology	916
			43.2.1.3	X-ray diffraction and X-ray photoelectron	
				spectroscopy analyses	917
			43.2.1.4	Stability	917
			43.2.1.5	In vitro release profile	918
		43.2.2	Magnetic	c Properties	919
			43.2.2.1	Superparamagnetic properties	919
			43.2.2.2	Saturation magnetization and blocking	
				temperature	920
		43.2.3	MR Char	acteristics	923
			43.2.3.1	In vitro relaxivities	923
			43.2.3.2	Possible effects of PLGA-mPEG copolymers	925
		43.2.4	In vitro (Cytotoxicity	925
		43.2.5	In vitro a	and ex vivo MRI	927
			43.2.5.1	In vitro MRI	927
			43.2.5.2	Ex vivo MRI	928
	43.3	Conclu	sions		929
	43.4	Experi	mental		929
		43.4.1	Material	S	929
		43.4.2	Nanopar	ticle Formulation of IOs	930
		43.4.3	_	hemical Characterization of IO-Loaded NPs	930
			43.4.3.1	Particle size analysis	930
			43.4.3.2	Transmission electron microscopy	930
			43.4.3.3	Surface morphology	930

			43.4.3.5	In vitro IO release	931
				XRD and XPS	931
			43.4.3.7	ICP-MS	931
			43.4.3.8	Saturation magnetization measurements	932
		43.4.4		Cytotoxicity	932
				racterization	932
			43.4.5.1	In vitro MRI	932
			43.4.5.2	Ex vivo MRI	933
		F	PART XI M	olecular Biomaterials for Nanomedicine	
44				ecular Biomaterial for Drug Delivery	939
		-	_	Tan, and Si-Shen Feng	
	44.1				939
	44.2		s Prodrug		941
				X Conjugate	942
				ditaxel Conjugate	943
	44.3		Based Mice		944
			Based Lipo		946
	44.5			Nanoparticles	947
				nulsified PLGA NP for i.v. Administration	947
				nulsified PLGA Nanoparticles for Oral Delivery	949
		44.5.3		nulsified PLGA NP and Further Coated with	050
		4454		0 for Delivery to Cross BBB	950
		44.5.4		nulsified Nanoparticles for Cardiovascular iis Treatment	950
	116	TDCC			
	44.6			for Nanoparticles Formulation	951 951
	44.7			A-TPGS Copolymers in Drug Delivery	951
			Polymer	synthesis tides Fabrication	951
		44.7.2	-	Nanoprecipitation method	953
			44.7.2.1		933
			44.7.2.2	emulsion) method	953
			44723	Dialysis method	954
				Double emulsion method	955
		44.7.3		maging Agent Encapsulation	955
		11.7.5	_	Docetaxel	955
				Paditaxel	960
				Doxorubicin	961
				Curcurmin and risperidone	962
				Protein delivery	962
				Supraparamagnetic iron oxides	963

43.4.3.4 Stability studies

931

		Contents x	XXV
	44.7.3.7 Quantum dots	963	
	44.7.3.8 Multimodal imaging system	964	
44.8	Targeting Strategies	967	
	44.8.1 TPGS-FOL Conjugate	967	
	44.8.2 TPGS-COOH	968	
	44.8.3 Antibody Coated on the Surface of Nanoparticles	971	
44.9	Advantages of the PLA-TPGS Series Copolymer	971	
Index		983	

Preface

Cancer is a leading cause of death worldwide and has become the number one killer in many countries, including China and Singapore. It was responsible for approximately 23.1%, 23.2%, 23.1%, 23.4%, and 23.3% of disease mortality from 2006 to 2010 in the United States and 27.7%, 29.3%, 29.3%, 28.5%, and 30.0% from 2007 to 2011 in Singapore, respectively. The World Health Organization estimates that global cancer rates could increase by 50% to 15 million patients and cancer rates in Asia could increase by 60% to 7.1 million patients by 2020. In spite of such a serious situation, no substantial progress in fighting cancer could be observed before the end of the past century. The cancer death rate in the United States was $1.939\%_{00}$ of the total population in 1950 and still remained 1.940% in 2001. Beyond these staggeringly dismal numbers, however, recent statistics have found that the cancer survival rate is slightly increasing for the first time in the first decade of the 21st century, which led to a slight decrease in the cancer death rate to $1.901^{\circ}/_{00}$ in 2003, $178.4^{\circ}/_{00}$ in 2007 and $172.8^{\circ}/_{00}$ in 2010 in the United States. This may have largely resulted from the significant achievements in cellular and molecular biology, from which new knowledge of cancer has been acquired and new diagnostic and therapeutic techniques could thus be developed. The US National Cancer Institute, the National Institutes of Health, and the US Department of Health and Human Services jointly published a white paper on cancer nanotechnology in 2004, which predicted that cancer nanotechnology will radically change the way we diagnose, treat, and prevent cancer (http://www.nci.org).

Chemotherapy is often related to cancer treatment. Nevertheless, a more general definition of chemotherapy could mean "curing disease by drugs" or as given by Dr. Paul Ehrlich, the father of modern chemotherapy, "curing by chemicals." With recent achievements in cellular and molecular biology, drugs can now also include biologically active macromolecules such as proteins and peptides. Chemotherapy is, thus, involved in the entire internal medicine. Chemotherapy is a complicated procedure in which many factors are involved in determining its success or failure. It carries a high risk due to drug toxicity, and the more effective drugs tend to be more toxic; its unfavorable pharmacokinetics and biodistribution are also a concern. Even successful chemotherapy is associated with problems. The patients have to tolerate severe side effects and

sacrifice their quality of life. Chemotherapy should become more important and more effective if its problems in pharmacokinetics and pharmacodynamics could be solved, which include the toxicity of the drugs; drug targeting; drug adsorption, distribution, metabolism, and excretion (ADME); drug resistance at various physiological levels from organs such as the first pass by the liver and the kidneys to cellular and molecular levels such as the various physiological drug barriers, including the gastrointestinal (GI) barrier and the blood-brain barrier (BBB). The problems could be solved by adopting two kinds of approaches: medical solution and engineering solution. The former is to use other drug or drugs to overcome the complications caused by the prescribed one. A typical example is the co-administration of cyclosporine A, a P-gp/P450 inhibitor, to make paclitaxel orally bioavailable, i.e., deliverable into the blood system through the oral route. However, cyclosporine A suppresses the body immune system and thus may cause severe side effects. Moreover, cyclosporine A has its own difficulty in formulation. It is clear that such medical approach is not a preferable solution. The engineering solution is to modify the molecular structure of the drug or to formulate the drug in various nanoscale carriers such as prodrugs, micelles, liposomes, dendrimers, nanohydrogels, and biodegradable nanoparticles, i.e., "to engineering the drugs" for delivery, which, in this case, can bring the drug across the GI barrier. Drugs formulated in the various nanoscale carriers for sustained, controlled, and targeted delivery are also called nanomedicine. Si-Shen Feng at the National University of Singapore, under the advice of Prof. Shu Chien at the University of California, San Diego, recognized the challenge by applying engineering, especially chemical engineering principles, to solve the problems in chemotherapy and defined the strategy as chemotherapeutic engineering in 2003. He believes that together with tissue engineering, which will revolutionize the concept of surgery from "cut and throw the diseased tissue or organ" to "repair and replace them by biologically engineered tissue or organ," chemotherapeutic engineering will contribute towards the 21st-century medicine.

This book is the collection of the peer-reviewed scientific and technological articles published from 2003 to 2012 by Prof. Si-Shen Feng, which are closely relevant to chemotherapeutic engineering. The collection comprises contributions ranging from founding articles to proof-of-concept experimental reports and covers the synthesis of novel molecular biomaterials design and preparation of drug carriers at the nanoscale, ligand conjugation for targeting, the characterization of the drug-loaded nanocarriers, in vitro cellular uptake of nanocarriers and in vitro assessment of the cytotoxicity of the formulated drug, in vivo investigation on pharmacokinetics and biodistribution and the xenograft tumor model. Paclitaxel and docetaxel are used as model drugs owing to their role as the number one seller in the global market of anticancer drugs and great difficulties in their formulation for clinical application. The methodology is also applicable for the formulation of imaging agents such as supraparamagneric iron oxides for magnetic resonance imaging. Chemotherapeutic engineering is thus relevant to pharmaceutical nanotechnology in the pharmaceutical industry. Formulation and combined diagnostic and therapeutic agents are now called nanodiagnostics

This book provides necessary knowledge for scientists, engineers, and master's and PhD students who want to be well prepared to work in the fields of chemotherapeutic engineering, cancer nanotechnology, and nanomedicine, or more generally in biomedical engineering. It also provides the basic knowledge and models for people who work in cancer clinics as well as in the pharmaceutical industry. It can also be used as a textbook or a reference book in teaching of courses such as drug delivery, chemotherapeutic engineering, and overview of nanomedicine. In fact, most of the contributions in this book have been used in the undergraduate course Engineering Principles of Drug Delivery, which is given by Prof. Si-Shen Feng in the National University of Singapore since 2002.

The editors thank the Agency for Science, Technology and Research (A*STAR) and the National University of Singapore (NUS) for financial support for the research conducted in the Chemotherapeutic Engineering Laboratory in the past decade. Prof. Feng sincerely acknowledges his postdoctoral fellows and PhD students. Among them, Drs. Li Mu, Lin Mei, M. S. Muthu, S. A. Kulkarni, Zhiping Zhang, K. Y. Win, Lingyun Zhao, Gang Ruan, Yuancai Dong, Jie Pan, P. Chandrasekharan, Bingfeng Sun, Yutao Liu, Yu Mi, and Jing Zhao made significant contributions in the various key steps. Finally, we would like to thank Mr. Arvind Kanswal of Pan Stanford Publishing for his commitment and assistance.

> Si-Shen Feng **Stanford Chong** Jenny Rompas December 2013