^{edited by} Yihong Wu Zexiang Shen Ting Yu

Fundamental Properties, Synthesis, Characterization, and Applications

II

NN.(a)

Sincisional

Two-Dimensional Carbon

edited by Yihong Wu Zexiang Shen Ting Yu

Two-Dimensional Carbon

Fundamental Properties, Synthesis, Characterization, and Applications

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Two-Dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications

Copyright © 2014 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4411-94-3 (Hardcover) ISBN 978-981-4411-95-0 (eBook)

Printed in the USA

Contents

Prefa	асе			xi	
1.	Introduction			1	
	Yihong Wu				
	1.1	Carbon	n Allotropes	1	
	1.2		imensional Carbon	3	
	1.3	Scope	of This Book	4	
2.	Electro	nic Band	d Structure and Properties of Graphene	11	
	Yihong Wu				
	2.1	Lattice	structure	11	
	2.2	Electro	onic Band Structure	12	
		2.2.1	Tight-Binding Model	12	
		2.2.2		15	
		2.2.3	Effect of Magnetic Field	19	
		2.2.4	Quantum Confinement and Tunneling	20	
	2.3	Electri	cal Transport Properties	23	
		2.3.1	Weak (Weak Anti-) Localization	24	
		2.3.2	Electrical Conductivity and Mobility	26	
	2.4	Summa	ary	29	
3.	Growth	n of Epit	axial Graphene on SiC	35	
	Xiaosoi	ng Wu			
	3.1	Introdu	uction	36	
		3.1.1	Graphene	36	
		3.1.2	Epitaxial Graphene on SiC	37	
	3.2	Growtł	ı on Si-Face	39	
		3.2.1	Growth Mechanism	39	
		3.2.2	Control the Growth	42	
		3.2.3	Beyond One Layer	46	
		3.2.4	More Than Just Si Desorption	47	
	3.3	Growth on C-Face 4			
	3.4	Conclusion			

4.	4. Chemical Vapor Deposition of Large-Area Graphene				
	on Metallic Substrates				
	Wei Wu and Qingkai Yu				
	4.1	Introduction			
	4.2	Graphene Synthesis Methods	68		
		4.2.1 Mechanical Exfoliation	68		
		4.2.2 Graphite Oxide Reduction	69		
		4.2.3 Thermal Decomposition of SiC	69		
		4.2.4 CVD of Hydrocarbons on Metals	70		
	4.3	CVD Graphene on Nickel	70		
	4.4	CVD Graphene on Copper	78		
	4.5	Single-Crystal Graphene	84		
	4.6	Summary	88		
5.	Growth	h and Electrical Characterization of Carbon			
	Nanowalls				
	Yihong	Wu			
	5.1	Introduction	95		
	5.2	Synthesis of Carbon Nanowalls by MPECVD	96		
		5.2.1 Growth Apparatus and Surface			
		Morphology	96		
		5.2.2 Growth Mechanism	99		
	5.3	Electrical Transport Properties	100		
		5.3.1 Electrical Transport Across the CNW			
		Junctions	102		
		5.3.2 Electrical Transport in Carbon–Metal			
	_ .	Point-Contact	106		
	5.4	Magnetic Properties	114		
	5.5	Summary	116		
6.	Structu	Iral Characterization of Carbon Nanowalls and			
	Their P	otential Applications in Energy Devices	121		
	Masaru Tachibana				
	6.1	Introduction	122		
	6.2	Synthesis of CNWs	123		
	6.3	Structural Characterization of CNWS	124		
		6.3.1 Raman Spectroscopy	125		
		6.3.2 Transmission Electron Microscopy	129		
	6.4	Potential Applications of CNWs to Energy			
		Devices	134		

		6.4.1	CNWs as	Negative Electrode in		
			Lithium	Ion Battery	134	
			6.4.1.1	Preparation of electrode	135	
			6.4.1.2	Cyclic voltammogram	135	
			6.4.1.3	Charge/discharge curve	137	
			6.4.1.4	High rate property	138	
			6.4.1.5	CNWs as catalyst support in		
				fuel cell	140	
				Preparation of Pt/CNW	140	
			6.4.1.7	Physical characterization of		
				Pt/CNW	141	
			6.4.1.8			
		_		characterization of Pt/CNW	144	
	6.5	Summ	ary		146	
7.	Rama	n and In	frared Spe	ctroscopic Characterization of		
	Graph		•	·	153	
	Da Zh	nan and Z	Zexiang Sh	en		
	7.1	Introd	uction		153	
	7.2	Raman Spectroscopic Features of Graphene				
		7.2.1	-	the Thickness and Stacking		
			-	y of Graphene	155	
		7.2.2	Probing	Doped Charges in Graphene	159	
		7.2.3	Defects i	n Graphene Probed by Raman		
			Spectros	сору	164	
		7.2.4	Graphen	e Edge Chirality Identified		
			by Rama	n Spectroscopy	169	
		7.2.5	Raman S	pectroscopy Probes Strain in		
			Graphen	e	173	
	7.3			onal Groups and Energy Gaps		
			-	bed by Infrared Spectroscopy	174	
	7.4	Summ	ary		176	
8.	Graphene-Based Materials for Electrochemical Energy					
	Storage					
	Jintao Zhang and Xiu Song Zhao					
	8.1	Introd	uction		183	
		8.1.1		of Graphene-Based Materials	184	
		8.1.2		hemical Energy Storage		
			Systems		187	

	8.2	Synthe	esis of Graphene-Based Materials	190	
		8.2.1	Synthesis of Graphene	190	
		8.2.2	Synthesis of Chemically Modified		
			Graphene	195	
		8.2.3	Synthesis of Graphene-Based		
			Composite Materials	202	
	8.3	Graph	ene-Based Materials as Supercapacitor		
		Electro	odes	207	
		8.3.1	Energy Storage in Supercapacitor	207	
		8.3.2	Basic Principles and Techniques for		
			Evaluation of Supercapacitor	210	
		8.3.3	Graphene and Reduced Graphene		
			Oxide as Supercapacitor Electrodes	216	
		8.3.4	Graphene Based Composite Materials		
			as Supercapacitor Electrodes	223	
	8.4		ary and Perspectives	232	
	8.5	Ackno	wledgements	233	
9.	Chemical Synthesis of Graphene and Its Applications				
	in Batt	eries		247	
	Xufeng	ufeng Zhou and Zhaoping Liu			
	9.1	Introd	uction	247	
	9.2	Chemi	cal Synthesis of Graphene	248	
		9.2.1	Direct Exfoliation of Graphite	248	
		9.2.2	Graphene from Graphite Oxide	249	
		9.2.3	Graphene from Graphite Intercalated		
			Compounds	254	
	9.3	Applic	ations of Graphene in Batteries	256	
		9.3.1	Li ion Batteries	256	
		9.3.2	Supercapacitors	264	
		9.3.3	Other types of Batteries	269	
	9.4	Summ	ary	271	
10.	Photor	nic Prop	erties of Graphene Device	279	
	Hua-M	'in Li an	d Won Jong Yoo		
	10.1	Introd	uction	280	
	10.2	Energ	y Band Structure of Graphene	283	
	10.3		nic Absorption of Graphene	284	
	10.4	Photo	current Generation in Graphene	286	
	10.5	Techn	ology for Performance Improvement	289	

		10.5.1	Asymmetric Metallization	290
		10.5.2	Graphene Stack Channel	290
		10.5.3	Graphene Plasmonics	291
	10.6	Summa	ary	292
11.	-		es and Reduced Graphene Oxide Sheets:	
	-		acterization, Fundamental Properties,	
	-	plicatio		297
	Shixin Wu and Hua Zhang			
	11.1	Introdu	iction	297
	11.2		ls of Production of Graphene	298
	11.3		iction to Graphene Oxide	299
	11.4		ls to Produce Stable Dispersion of	
			ed Graphene Oxide	300
	11.5		terizations and Fundamental	
		•	ties of Reduced Graphene Oxide	302
		11.5.1	Characterization with Atomic Force	
			Microscopy	302
		11.5.2	Characterization with X-Ray	
		44 5 0	Diffraction	303
		11.5.3	Characterization with X-Ray	004
			Photoelectron Spectroscopy (XPS)	304
		11.5.4	Characterization with Raman	205
		44 6 6	Spectroscopy	305
	11 (Conductivity	305
	11.6	Oxide	g Applications of Reduced Graphene	306
			Field-Effect Transistor Sensors	306
			Electrochemical Sensors	308
			Matrices for Mass Spectrometry	309
	11.7		Applications of Reduced Graphene	309
	11./	Oxide	ripplications of Reduced Graphene	310
			Memory Devices	310
			Solar Cells	310
	11.8		ations of Graphene Oxide	313
	0		Fluorescence Sensors	313
			Solar Cells	315
	11.9	Conclu		316
Index	ζ			329

Preface

Graphene in the ideal form is a single layer of carbon atoms arranged in a honeycomb lattice, consisting of two interpenetrating Bravais sublattices. It is this unique lattice structure that gives graphene a range of peculiar properties that most metals and semiconductors lack. As far as electronic applications are concerned, its gapless and linear energy spectrum, high carrier mobility, frequency-independent absorption, and long spin diffusion length make it a material of choice for a variety of electronic, photonic, and spintronic devices. Apart from these applications, owing to its unique electronic properties, graphene has also attracted tremendous attention for applications that are due to primarily its unique shape and surface morphology, and low-cost production of related materials such as few-layer graphene sheets and graphene oxides. These graphene derivatives are more attractive and viable than single-layer graphene for applications that require a large quantity of materials with low cost and that rely less on graphene's electronic properties. These different types of graphenebased carbon nanostructures are referred to as two-dimensional (2D) carbon in this book, which include but are not limited to single layer graphene, few-layer graphene, vertically aligned few-layer graphene sheets (or carbon nanowalls), reduced graphene oxide and graphene oxide, etc. As far as large-scale applications are concerned, we feel that these graphene-related materials may be a step closer to reality than their pure graphene counterpart, in particular, in energy storage-related applications. This has motivated us to pull together a team of researchers who are doing frontier research in the respective fields to discuss fundamental properties of graphene, synthesis and characterization of graphene and related 2D carbon structures, and associated applications in an edited book.

The book is organized into 11 chapters. Following the introduction in Chapter 1, Yihong Wu gives a brief overview of electronic band structure and properties of graphene in Chapter 2. In addition to the description of band structure based on the tight-binding model, several unique electron transport properties of graphene are discussed. Chapters 3 and 4 cover the growth of graphene on SiC substrates by Xiaosong Wu and on metallic substrates by Wei Wu and Qingkai Yu, respectively. The former discusses the growth mechanism of graphene on both Si-face and C-face of SiC, while the latter deals with the growth of graphene on nickel and copper substrates using chemical vapor deposition. Chapter 5 discusses the growth and electrical transport properties of carbon nanowalls on different types of substrates. Emphases are placed on how to design and form different types of electrical contacts that allow for the study of electrical transport properties of material structures with an unusual surface morphology. This is then followed by Chapter 6, in which Masaru Tachibana writes about the structural characterization of carbon nanowalls using Raman spectroscopy and transmission electron microscopy, and their potential applications in energy storage such as lithium ion batteries and fuel cells. In Chapter 7, Zexiang Shen and Da Zhan discuss the structural properties of 2D carbon based on Raman spectroscopy studies. Chapters 8 and 9 are devoted to the energy storage applications of graphene obtained by the chemical reduction route, which is more cost effective compared with other vapor deposition-based techniques. Xiu Song Zhao and Jintao Zhang focus on the applications of 2D carbon in supercapacitor in Chapter 8, followed by Zhaoping Liu and Xufeng Zhou dealing with battery applications in Chapter 9. The photonic properties of graphene are discussed by Won Jong Yoo and Hua-Min Li in Chapter 10. In Chapter 11, Hua Zhang and Shixin Wu discuss another important material derived from graphene, graphene oxide, and its potential applications in sensor and memory devices.

Owing to the very competitive environment of graphene research, many researchers would put their priority in doing research and writing papers rather than contributing to book chapters. In this context, we would like to thank all the contributing authors for their excellent chapters; without their extra efforts, we would not have the book in the present form. We would like to thank Prof. Andrew Thye Shen Wee of National University of Singapore for giving the opportunity to edit this book. Finally, we would like to thank Mr. Stanford Chong and his team at Pan Stanford Publishing for their help on this project.

> Yihong Wu Zexiang Shen Ting Yu