edited by Hans-Jörg Fecht | Kai Brühne | Peter Gluche

CARBON-BASED NANOMATERIALS AND HYBRIDS

Synthesis, Properties, and Commercial Applications

CARBON-BASED NANOMATERIALS AND HYBRIDS

CARBON-BASED NANOMATERIALS AND HYBRIDS

Synthesis, Properties, and Commercial Applications

edited by Hans-Jörg Fecht | Kai Brühne | Peter Gluche

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Carbon-based Nanomaterials and Hybrids: Synthesis, Properties, and Commercial Applications

Copyright © 2014 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

Cover image: The atomic force microscope image (AFM) demonstrates the ultra-smooth surface of a nanocrystalline diamond layer with a root mean square roughness of 16 nm (top left/courtesy Matthias Wiora, Ulm University).

Free standing piezoresistive (*n*-type) diamond microcantilevers with a thickness of typically 10 μ m and a length between 500 μ m and1000 μ m (top right/courtesy Neda Wiora, Ulm University).

Diamond-based escapement wheel and anchor—the heart of a lubrication-free mechanical watch (bottom/courtesy Diamaze Microtechnology SA, La Chaux-de-Fonds, CH).

ISBN 978-981-4316-85-9 (Hardcover) ISBN 978-981-4411-41-7 (eBook)

Printed in the USA

Contents

Prefa	се			xi
1.	C-Based Materials on a Nanoscale: Synthesis, Properties, Applications, and Economical Aspects			
	Hans-J	örg Fecl	ht and Kai Brühne	
2.	2. Synthesis of Nanodiamond Matthias Wiora, Kai Brühne, and Hans-Jörg Fecht			
	2.1 Substrate Pretreatment			6
		2.1.1	Manual Scratching	8
		2.1.2	Bias-Enhanced Nucleation	9
		2.1.3	Nanoseeding	11
	2.2		echniques for Diamond Growth	13
			Principles of CVD	13
			Hot-Filament CVD	15
			Microwave Plasma CVD	17
	2.3 Microcrystalline vs. Nanocrystalline Diamond			17
		2.3.1		18
		2.3.2		23
	2.4 Growth Parameter Variation			28
			Role of Pressure	29
		2.4.2		32
	2.5	Summa	ary	36
3.	Advand	ced Carb	oon Aerogels for Energy Applications	49
	Juergei	n Biener	r, Michael Stadermann, Matthew Suss,	
	Marcus	s A. Wor	sley, Monika M. Biener, and	
	Theodo	ore F. Ba	umann	
	3.1 Introduction			50
	3.2	Applic	ations	52
		3.2.1	Hydrogen Storage	52
		3.2.2	Supercapacitors and Batteries	53
		3.2.3	Capacitive Deionization	55
		3.2.4	Catalysis	55

	3.3	Design	of Carbon Aerogels	56
		3.3.1	Synthesis	56
		3.3.2	Activation	59
		3.3.3	Incorporation of Modifiers	61
		3.3.4	Templating	63
		3.3.5	Surface Functionalization	64
	3.4	Summ	ary	68
4.	Carbor	n Electro	nics	79
	Colin J	ohnston		
	4.1	Diamo	nd	79
	4.2	Diamo	nd-Like Carbon	86
	4.3	Carbor	n Nanotubes	87
	4.4	Graphe	ene	93
	4.5	Fullere	enes	99
	4.6	Conclu	isions	101
5.	Nanos	copic Int	terfacial Water Layers on Nanocrystalline	
	Diamo	nd: Fror	n Biosensors to Nanomedicine	105
	Andrei	P. Somr	ner and Hans-Jörg Fecht	
	5.1	Introd	uction	105
	5.2	Nanos	copic Interfacial Water Layers	107
		5.2.1	Nanoscopic Interfacial Water Layers	
			and Material Surfaces	109
	5.3	Nanon	nedicine	110
	5.4	Robus	t and Self-Sufficient Diamond-Based	
		Biosen	ISOTS	115
	5.5	Nanos	copic Interfacial Water Layers on	
			gen-Terminated Diamond: Model for	
		Proton	Transport in Cells	117
	5.6	Conclu	isions	118
6.	Synthe	sis of Ca	arbon Nanotubes and Their Relevant	
	Proper	ties		125
	Aljosch	na Roch,	Esther Roch Talens, Beata Lehmann,	
	-		d Andreas Leson	
	6.1	Introd	uction	125
	6.2	Subdiv	rision and Structure of Carbon	
		Nanoti	ubes	126

	6.3 Properties of SWCNTs				
		6.3.1	Electronic Band Structure of SWCNTs	130	
		6.3.2	Density of States and Optical		
			Properties of SWCNTs	131	
	6.4	Charac	cterization of SWCNTs	132	
		6.4.1	Optical Absorption Spectroscopy	132	
		6.4.2	Raman Spectroscopy	135	
			6.4.2.1 Radial breathing mode	135	
			6.4.2.2 G^+ and G^- peaks	136	
			6.4.2.3 <i>D</i> and <i>D</i> ′ peaks	137	
	6.5	Synthe	esis of SWCNTs	138	
		6.5.1	CVD for Synthesis of SWCNTs	138	
		6.5.2	SWCNT Synthesis by Laser		
			Evaporation	139	
		6.5.3	SWCNT Synthesis by Continuous Arc		
			Discharge	139	
		6.5.4	SWCNT Synthesis by Pulsed Arc		
			Discharge	140	
		6.5.5	Selective Synthesis of m- and		
			sc-SWCNTs	141	
	6.6	Compa	arison of Different CNT Materials	143	
		6.6.1	Characterization of Purified		
			Carbon Nanotubes by Raman and		
			Transmission Electron Microscopy	143	
			6.6.1.1 Characterization of		
			transparent conductive		
			films containing purified		
			carbon nanotubes	146	
7.			lications and Commercial Perspectives		
	of Nan	ocrystal	lline Diamond	155	
			a, Ralph Gretzschel, Stefan Strobel,		
	and Pe	ter Gluc	che		
	7.1	Genera	eral Aspects and Applications		
	7.2				
		Moven	Movement		
	7.3	Micro-	/Nanostructuring of CVD Diamond	161	
		7.3.1	All-Diamond Parts	161	
		7.3.2	Diamond-Coated Silicon Parts	164	

	7.4	Summa	ary		167
8.		nic Anal nodiam	-	rket Opportunities for CNTs	171
	Matthi	as Wern	er, Mario	Markanovic,	
	Cathar	ina-Sop	hie Ciesla,	and Leif Brand	
	8.1	Introd	uction		172
		8.1.1	Definitio	n	173
		8.1.2	Overviev		173
				Carbon nanotubes	173
				Nanodiamond	175
			8.1.2.3	Comparison of carbon	
				nanotubes and nanodiamond	
				(Table 8.1)	176
	8.2			chnological Aspects	178
		8.2.1	State of I		178
				Nanoelectronics (TRL 1)	178
			8.2.1.2	Biomedical applications	
				(TRL 1 to TRL 2)	179
				Biocompatibility (TRL 2)	179
				Hydrogen storage (TRL 2)	180
				Displays (TRL 3)	180
				Sensors (TRL 3)	180
			8.2.1.7	Electrochemical applications	101
			0 2 1 0	(TRL 3 to TRL 4)	181 181
				Composite materials (TRL 4)	101
			0.2.1.9	Production of polymer composites (TRL 4)	181
			Q 2 1 10	Technical production of	101
			0.2.1.10	carbon nanotubes (TRL 5)	182
		8.2.2	Addition	al Demand for Research	184
		8.2.3		ons and Perspectives	185
		8.2.4		Situation within the EU	186
	8.3		mic Aspec		187
	0.0	8.3.1	-	Market Description	187
		8.3.2		nd Barriers	189
		8.3.3		y Conditions	191
		8.3.4		c Information and Analysis	192
		8.3.5	Patent A	-	193
				-	

Contents ix

	 Carbon nanotubes Nanodiamond	193 195
Index		201

Preface

Carbon-based materials date centuries back in their synthesis and usage and comprise a whole realm of different crystallographic structures, chemical bonds and geometries, such as natural and synthetic diamond, different variations of graphite, carbon fibers, and their composites. Over the past few years however, the controlled reduction of sample size into the range of a few nanometers at least in one dimension has received growing interest and a renaissance of the field.

Diamond is renowned as a material with superlative physical qualities, most of which originate from the strong covalent bonding between its atoms. Diamond has the highest hardness and highest thermal conductivity of any bulk material and those properties determine the major industrial applications of diamond in cutting and polishing tools, windows, heat spreaders, and the scientific applications in diamond knives, diamond anvil cells, and as an optical detector material. Although diamond is thermodynamically less stable than graphite, the conversion rate from diamond to graphite is negligible at standard conditions.

Graphite generally can be considered as a well-ordered kind of coal and represents an electrical conductor, a semimetal that is mechanically rather soft due to its weak Van der Waals interlayer bonds and thus forms a two-dimensional structure. The basic unit of graphite is one layer of carbon, which is called graphene.

Furthermore, carbon nanotube or generally carbon fiber is a material consisting of fibers typically 5–10 μ m in diameter. To produce carbon fiber, the carbon atoms are bonded together in crystals that are more or less aligned parallel to the long axis of the fiber. This alignment gives a high strength-to-volume ratio with carbon fibers exhibiting furthermore high stiffness, high tensile strength, low weight, high chemical resistance, and low thermal expansion. Carbon fibers are usually combined with other materials to form a composite. When combined with a plastic resin, it forms a carbon fiber–reinforced polymer that has a very high strengthto-weight ratio, is lightweight, and is extremely rigid although somewhat brittle with an abundance of applications in aerospace, automotive, and civil engineering; motorsports; and others.

Considering more recent developments, the miniaturization of material dimensions, components, and structures nowadays is reaching dimensions of a few nanometers—a development which generally is termed nanotechnology. In general, most materials properties are changed dramatically when reaching nanometer sizes and thus nanoscaled materials can be engineered through the controlled and size-selective synthesis of nanoscale building block with tunable and improved physical and chemical properties.

This trend over the last decades has been taken up here and represents the main focus of the present book applied to C-based materials. Nano-sized C-based materials include several modifications and geometries, such as nanocrystalline diamond, amorphous diamond-like carbon (DLC), C-based aerogels, and carbon nanotubes (CNTs), while some other new developments including fullerenes and graphene are still in their infancy. The book compiles and details cutting-edge research, and several applications are described within the fields of energy, microelectronics, biomedicine, and beyond. Furthermore, a perspective is given, including a diversity of industrial applications and market opportunities for C-based nanoscale materials and devices in the future.

With eight chapters contributed by world-class scientists and engineers, this book covers most recent developments in the science and technology of C-based nanomaterials for a number of industrial applications. It addresses both academia and industry research and engineering in this fast-developing field.

> Hans-Jörg Fecht Kai Brühne Peter Gluche Spring 2014

Acknowledgment

The financial and intellectual support of BMBF-VDI/VDE IT (C-HYBRID 16SV5320K and VIP-DiM 16SV6053) as well as Ulysse Nardin, Le Locle, Switzerland, and Audemars Piguet, Le Brassus, Switzerland, are gratefully acknowledged.

We would also like to thank the publishers, in particular, Stanford Chong and Shivani Sharma; and a number of graduate students working in the group, including M. Mertens, M. Mohr, N. Wiora, and D. Zhu for their excellent contributions; and Helga Faisst and Carolyn Kotlowski for their expert technical support.