edited by Alexander Ya. Vul' Olga A. Shenderova

DETONATION NANODIAMONDS Science and Applications

DETONATION NANODIAMONDS

DETONATION NANODIAMONDS Science and Applications

edited by Alexander Ya. Vul' Olga A. Shenderova

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Detonation Nanodiamonds: Science and Applications

Copyright © 2014 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4411-27-1 (Hardcover) ISBN 978-981-4411-28-8 (eBook)

Printed in the USA

Contents

Pr	eface	2			xi	
1	Cark	oon at t	he Nano	scale	1	
	Alex	Alexander Ya. Vul' and Olga A. Shenderova				
	1.1	I Introduction				
	1.2	.2 Classification of Carbon Nanostructures				
	1.3 Main Types of Carbon Nanostructures					
		1.3.1	Fullere	nes	7	
		1.3.2	Carbon	Onions	9	
		1.3.3	Carbon	Nanotubes	12	
		1.3.4	Graphe	ne	13	
	1.3.5 Nanodiamonds				15	
			1.3.5.1	Synthesis of diamond from graphite in		
				the presence of metal catalysts	16	
			1.3.5.2	Detonation nanodiamonds	16	
			1.3.5.3	Laser method of nanodiamond		
				synthesis	18	
			1.3.5.4	Diamond synthesis by ultrasonic		
				cavitation	20	
			1.3.5.5		20	
	1.4 Structural Phase Transitions between Different Forms					
		011100	nocarbor	•	22 24	
	1.5	5 Closing Remarks				
2	Technology of Preparation of Detonation Nanodiamond					
	Aleksandr E. Aleksenskii					
	2.1 Formation of Diamonds in a Detonation Wave					
	2.2 Specific Features of Detonation Carbon Synthesis					
	2.3	2.3 Isolation of Nanodiamond from Detonation Carbon 4				

		2.3.1	Purification of Nanodiamond from		
			Nondiamond Forms of Carbon	48	
		2.3.2	Purification of Nanodiamond from Metal		
			Oxides	52	
		2.3.3	Purification of Nanodiamond from Inert Oxides	53	
		2.3.4	Washing and Isolation of Nanodiamond	54	
		2.3.5	Methods of Deaggregation of Nanodiamond		
			Particles and Preparation of Nanodiamond		
			Suspensions	55	
		2.3.6	Methods Employed in Control of the Purity of		
			Detonation Nanodiamond	68	
3	Met	hods o	f Characterization and Models of Nanodiamond		
	Part	icles		73	
	Mar	ina V. B	Baidakova		
	3.1	Struct	ture of Detonation Carbon Particles	73	
	3.2	Agglo	merates of Detonation Carbon Particles	82	
	3.3	On the	e Structure of the DND Particle	88	
	3.4	Concl	usion	94	
4	Opti	ical and	Rheological Properties of Nanodiamond		
	Susp	pension	IS	101	
	Alex	ander \	′a. Vul' and Evgeniy D. Eydelman		
	4.1		ling Graphitization of the Surface of Diamond		
		Nano	particles	102	
	4.2	Viscos	sity of Diamond Nanoparticle Suspensions	105	
	4.3	Qualit	tative Analysis of the Optical Properties of		
		Nanoo	diamond Hydrosols	108	
	4.4	Nume	erical Calculations of the Optical Properties of		
		Diamo	ond Nanoparticle Hydrosols	114	
	4.5		fic Features of the Optical Properties of DND		
		Hydro	osols	117	
5	Ram	nan and	Photoluminescence Spectroscopy of Detonation		
	Nanodiamonds				
	lgor	I. Vlaso	ov and Olga A. Shenderova		
			pretation of DND Raman Spectra	122	
	5.2	Phone	on Confinement	123	

	5.3	Photo	luminescence of DND	129
		5.3.1	Single-Photon Emitters Based on Luminescent	
			Nanodiamonds	129
		5.3.2	Optical Markers Based on Luminescent	
			Nanodiamonds	133
		5.3.3	Photoluminescence of DND	138
6	Stud	ly of De	etonation Nanodiamonds by Electron	
	Para	amagne	tic Resonance	151
	Alex	ander I	. Shames	
	6.1	Introd	luction to Electron Paramagnetic Resonance	152
		6.1.1	EPR and its Applications in Physics, Chemistry,	
			and Biology	152
		6.1.2	Fundamentals of the Theory of EPR	153
	6.2	EPR S	tudies of DND Powders	158
	6.3	EPR o	f Ultrananocrystalline Diamond Films	161
	6.4	EPR o	f Multilayer "Onion-Like" Nanographites	
		Obtai	ned from DND	163
	6.5	EPR S	tudy of DND with the Surface Modified by	
		Trans	ition Metal Ions	164
	6.6	Locali	ization of RCs in DND by EPR	171
7	Nuc	lear Ma	agnetic Resonance in Nanodiamonds	181
	Alex	ander I	M. Panich	
	7.1	Introd	luction	181
	7.2	NMR	Spectra and the Chemical Shift	182
	7.3	NMR	Relaxation	185
	7.4	NMR	Spectra in Detonation Nanodiamond	186
	7.5	Nucle	ar Relaxation in Detonation Nanodiamond	195
	7.6	Concl	usion	201
8	Ма	gnetic a	nd Structural Studies of Multilayered	
	Nanographites Prepared from Detonation Nanodiamond			
			. Osipov	
	8.1		luction	205
	8.2	Magn	etic Moment Measurement with a SQUID	
		Magn	etometer	206

	8.3	°					
		Nature of Diamagnetism in Aromatic Compounds					
	0.4	and Graphite Edge – Electropic States in Neuerrenhouse and					
	8.4	Edge π Electronic States in Nanographenes and Nanographites					
	8.5	Nanographites					
	0.5	Preparation of Nanographite from Nanodiamond and Methods of its Characterization					
	8.6		etic Properties of Nanographites:	217			
	0.0		agnetism and Diamagnetism	222			
		1 al all					
9	Арр	lication	s of Detonation Nanodiamonds	239			
	Artu	r T. Did					
	9.1		cations of DND in Present-Day Technology	239			
			Abrasives	240			
			Binder for Tools and Abrasive Ceramic	240			
			Lubricants	241			
			Metal-Nanodiamond Coatings	242			
			Bulk Metal–Nanodiamond Composites	243			
		9.1.6		243			
			Bulk Composites with Organic Polymers	244			
		9.1.8		245			
			Adhesives	247			
			Ferromagnetic Composites	247			
		9.1.11 Crystallization Centers for CVD Technology of					
			Diamond Films	248			
			Photonic Crystals Produced by CVD	250			
			Adsorbents and Chromatography	251			
			Catalysts	252			
			Coolant Liquids	253 254			
	9.2	r r					
	9.3		e Promising DND Applications in Engineering				
			echnology	256			
			Field Emitters	256			
			Nanothermoelements	257			
			Nano- and Micromechanical Devices	258			
			Luminescence and Magnetometry	258			
		9.3.5	Selective Chemical Sensors	260			

10	Biomedical Application of Nanodiamonds: Reality and					
	Perspectives				267	
	Levor	B. Piotr	ovskiy, Dm	itrii N. Nikolaev, and		
	Olga .	A. Shend	lerova			
	10.1 Introduction				267	
	10.2	Surface	e Propertie	es of Detonation Nanodiamonds	269	
		10.2.1	Surface M	Aodification	270	
		10.2.2	Surface M	Aodification by Proteins	271	
	10.3 Possible Areas of DND Applications		274			
10.3.1 Bioanalytical Applications		tical Applications of				
			Nanodiamonds		274	
			10.3.1.1	Chromatography	274	
			10.3.1.2	Solid-phase sorbents	276	
			10.3.1.3	Biochips and sensors	277	
		10.3.2 Nanodiamonds in vitro		279		
			10.3.2.1	Nanodiamonds as fluorescent		
				biomarkers	279	
			10.3.2.2	Other ways of nanodiamond		
				visualization in living structures	282	
			10.3.2.3	Nanodiamonds and cells	283	
			10.3.2.4	Nanodiamonds in drug delivery	286	
		10.3.3	Nanodia	monds in vivo	289	
	10.4	Biocom	npatibility	of Nanodiamonds	290	
		10.4.1	Toxicity		292	
10.4.2 Metabolism and Excretion		sm and Excretion	294			
	10.5 Emerging Problems and Application Potential					
	Appendix					
	A.1 Cell					
		A.1	l.1 Organ	elles and Their Functions	298	
	A.2 Endocytosis					
T., J					224	

Index

321

Preface

Diamond has been well known since time immemorial, and applications of this material, truly unique in its beauty, hardness, and chemical stability, keep expanding as years go by. For hundreds of years mankind has used natural diamonds, but it was only from the mid-1950s that industrial production of diamond on a commercial scale in reactors capable of maintaining the required high pressures, of tens of thousands of atmospheres, and temperatures of about 1,500 degrees Kelvin was announced to the world.

Annual production of such artificial diamonds ranging in size from a few hundred to a few microns, the so-called micropowders, has presently reached a level of hundreds of thousands of carats per year.

Presently, when most technologies are moving with confidence from the microscale into the nanometer-scale world, demand has arisen for diamonds of the corresponding size. Such nanodiamonds were first synthesized in the Soviet Union in the 1960s and their industrial production initiated in the late 1980s. The starting raw material for nanodiamond synthesis was carbon, present originally in explosives, and the high pressure and temperature needed for formation of the diamond structure from carbon atoms were reached as a result of the explosion itself. The short duration of the explosion accounted for the small size of the diamond crystallites, which measured a few billionths of a meter only.

As is now obvious, work conducted on the explosive method of synthesis was not made public for a period of time. As a consequence, this method of preparing nanodiamonds from the carbon of explosives was discovered over and over again independently by different research groups. From the publication of the pioneering works on the so-called detonation nanodiamonds made in Russia and the United States in 1988, scientists have passed a long way indeed.

The first studies were naturally devoted to the investigation of the synthesis process and were aimed at increasing the fraction of the carbon atoms contained within the explosive eventually incorporated into the diamond lattice of the final product of the synthesis. Possibly, the most challenging problem in the process turned out to be the development of the technology for isolating the diamond crystallites from the final product, that is, the detonation carbon formed during the explosion. Detonation carbon is actually a mixture of nanodiamonds; particles of amorphous, graphite-like carbon; and impurities entering the material from the starting explosive and the reactor walls.

This work was paralleled by an investigation of the processes involved in the nanodiamond-graphite structural phase transition. The high temperature persisting during the unavoidable drop of pressure after the explosion brought about reverse transformation of a part of the formed nanodiamonds into graphite, thus lowering the efficiency of the synthesis process. It was, however, found that under certain conditions this structural phase transition passes through an intermediate stage in which onion-like carbon or multilayer fullerenes form. Moreover, if acted upon by an electron beam, the buckyonions themselves can reconvert back into nanodiamonds. This has revealed an intimate relationship between the fullerenes discovered in 1980s and nanodiamonds.

The emerging possibility of studying structural transformations on the nanoscale was naturally attractive to scientists. No less intriguing was finding nanodiamonds in meteorites. This finding alone could have been sufficient to account for the interest in nanodiamonds revealed in basic sciences, but it is the industrial application of nanodiamonds that is behind the attention focused presently on the investigation of their properties.

Studies conducted during recent years showed that nanodiamonds, new nanosized building blocks, can be used to advantage in devising nanocomposite materials, nanoelectronics components, selective adsorbents, and catalysts. Application of nanodiamonds improves considerably the quality of microabrasive and polishing compositions, lubricating oils, abrasive instruments, polymer compositions, rubbers, and magnetic recording systems and offers the possibility of growing diamond films on various substrates.

One of the most attractive applications of nanodiamonds turned out to be their use in biology and medicine as biomarkers and for targeted drug delivery.

A significant factor that has apparently played a major role in stimulating interest in detonation nanodiamonds is that among the new carbon nanostructures discovered at the turn of the century—various types of fullerenes and nanotubes—detonation nanodiamonds were one of the first to be produced on an industrial scale and, thus, are commercially available for use in nanotechnologies.

In our opinion, progress in methods of synthesis of detonation nanodiamonds and clear insight into the broad scope of their applications have approached at the beginning of this century the stage where detonation nanodiamonds are considered one of the most attractive carbon-based materials for nanotechnologies. By this time, reports on nanodiamonds produced in detonation synthesis began to appear at increasing frequency at international "diamond devoted" conferences. In the period of 2003–2008, the first specialized conferences were held and reviews and monographs dealing with this material appeared.

Studies conducted in recent years in Russia, the United States, Japan, China, and a number of European countries have produced a wealth of comprehensive information on the specific features of the structure of nanodiamond particles. Truly unique possibilities have opened up as a result of chemical modification of their surface, leading to considerable promise for their use in numerous applications. The results of these studies are summarized in this monograph. The authors of the chapters of the monograph are world-renowned experts who have published a number of review papers in this area.

The monograph addresses successively the specific features of the production technology and the effect of the technological parameters on the structure and physicochemical properties of nanodiamonds, assesses the possibilities inherent in purposefully directed chemical modification of the surface and methods employed in structural modification of nanodiamonds to produce nanographite, discusses various approaches used in the investigation of nanodiamonds as a carbon nanostructure, and describes and critically analyzes the potential promised by the use of nanodiamonds in various areas of technology and medicine.

There are two significant features that distinguish the present monograph. First, rather than being just a collection of individual reviews, it is a book written with a common theme. Second, the monograph is published in both Russian and English, an approach that, in our opinion, will be a step forward in developing a common terminology and a common view of many problems, both already solved and those still remaining open, that bear on detonation nanodiamonds.

The monograph addresses a broad audience of readers interested in nanotechnologies, and we sincerely hope that it will be found useful both by specialists in the field and senior students who are still looking for challenging problems to direct their efforts to.

> Alexander Ya. Vul' Olga A. Shenderova