
H
aycock | A

hluw
alia |  W

ilkinson
Cellular in vitro Testing

Growing cells in 2D under static conditions has long been the gold standard 
of cell culture, despite this method not being representative of the complex in 
vivo environment. The use of animal models also has clear ethical and scientific 
limitations, and increasingly the 3Rs (replacement, refinement, reduction) in relation 
to animal models are being integrated into the modern-day scientific practice.

Focusing on new 3D in vitro methods now available to researchers, this book 
brings together examples of leading-edge work being conducted internationally 
for improving in vitro cell culture methods, in particular the use of systems for 
enabling cell culture under laminar flow and the use of 3D scaffolds for providing 
cells with a structure which replicates the function of the extracellular matrix and 
encouraging interactions more akin to an in vivo environment.
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Preface

The laboratory culture of eukaryotic cells has now been routine

practice for over four decades, underpinning a multitude of

biological and medical applications—from cancer studies to drug

discovery, from toxicology to stem and developmental cell biology.

Irrespective of the applications, the tools and techniques that are

used to grow an adherent cell in vitro outside a living organism

comprise of the cell culture medium, the tissue culture incubator and

a substrate, most commonly made from “tissue culture polystyrene”

or glass. The substrate, in almost all instances, takes the form of a

flat two-dimensional (2D) surface. Although a very large number of

biological studies have been performed using 2D in vitro cell culture,

one might be forgiven for questioning the relevance of such studies

when interpreting the information in light of in vivo models, which

consider the relevance of multi-cellular tissues and organs, a blood

supply, an immune system, plus endocrine and neuronal signals.

To overcome the limitations of 2D models, a number of 3D in

vitro models are being developed for a range of tissues and organs,

which take account of the spatial organisation and arrangement of

the cells therein. The development of all such models has a common

objective, which is to establish scientifically robust platforms for

enabling the improved interpretation of data beyond what simple

2D cell cultures provide. A more ambitious objective is to approach

the physiological relevance of an in vivo model—and furthermore,

in so doing to Replace, Reduce, or Refine the necessity of the in

vivo model itself, especially those based on animal studies. Thus, the

development of 3D cell culture in vitro models directly addresses the

3Rs principle, first introduced by Russell and Burch in 1959 in their

book The Principles of Humane Experimental Technique.
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For this to become a possibility, it is necessary to establish

a growth environment that mimics the native tissue structure as

closely as possible. Thus, 3D culture models typically combine ma-

terials science, cell biology, and bioreactor design. The integration

of these approaches is particularly important, given the practical

and applied directions of such work. For example, the promise of

regenerative medicine to replace body parts suffering acute injury

or degeneration associated with aging is frequently reported in

the popular media. However, the routine uses of such therapeutic

treatment are presently few and far between. To accelerate progress,

accurate and relevant 3D culture models must be developed, as they

will be essential for the development of such technologies.

3D cell culture models generally include the study of whole

animals and organotypic explant cultures (including embryos), cell

spheroids, microcarrier cultures, and tissue-engineered constructs.

So while not all 3D cell culture models require a scaffold, their use

has seen a rapid increase in recent years. This is in large part due

to advances in biomaterial science and fabrication methods for 3D

printing, for example, micro-stereolithography of polymers for cre-

ating scaffolds with micrometer resolution, or similarly electrospin-

ning, micro-extrusion, micro-injection moulding and ink jet printing.

The potential to use human primary cells or stem cells is

highly relevant when developing 3D in vitro cultures, not only

for considering the 3Rs as an alternative approach but also for

understanding the fundamental processes of cellular differentiation.

This becomes particularly important when considering methods for

therapeutic intervention. The ability to isolate cells with the capacity

to renew, mitotically divide, and differentiate into a diverse range

of cell types is of fundamental importance—and yet many studies

on stem cells still use a 2D environment. New evidence is now

emerging on the relevance of the 3D environment and the ability

of cells to “sense” their 3D environment including the extracellular

matrix stiffness, reported to determine stem cell differentiation

along a particular lineage. This logically extends, though, to the

culture environment and the ability to supply nutrients in the

culture medium to a growing niche of metabolically active cellswhile

simultaneously removing the waste products for maintaining

survival. Considerable evidence also exists on the development
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and need for communication of different cell types in 3D culture,

where paracrine signalling is responsible for the differentiation and

development of cell types in co-culture to form a nascent functioning

tissue, for example, keratinocytes and fibroblasts for 3D skin models

or neuronal and glial cells for 3D nerve models. Thus, the rapid

development of bioreactor systems for allowing controlled flow, the

spatial organization of cell–scaffold constructs, as well as organ

crosstalk for this purpose is gaining momentum.

Cellular in vitro Testing: Methods and Protocols reports on a

wide range of methods for the applications of 3D in vitro cell

culture models, either for the purposes of in vitro testing or

in the long-term development of forming tissues for therapeutic

purposes. The scope and contents of the book have arisen from

selected presentations given at the Annual Quasi-Vivo R© User Group

Meetings, and the style of each chapter is based on a descriptive

protocol style, such that readers will be able to reproduce individual

methods in the laboratory step-by-step. The book starts with a

review chapter, which gives an overview of methods for connected

culture experiments using perfused flow chambers. Thereafter,

there are nine chapters which cover key areas in human airway

inhalation toxicity, quantifying xenobiotic metabolizing enzymes

in hepatocytes, cardiac patches, risk assessment of nanoparticles,

the development of nanosensor scaffolds, a paracrine human skin

model for irritancy detection, drug testing using intestinal mucosa,

a human bronchial model and the use of a porous scaffold for simple

and routine 3D culture.

We hope this book serves as a useful methods and protocols man-

ual for laboratory scientists who need to develop the underpinning

scientific basis and technical details for 3D in vitro cell cultures.

We are personally indebted to all of the international experts who

have kindly contributed chapters and taken great care and time in

preparing their contributions for this book.

John W. Haycock
Arti Ahluwalia

John M. Wilkinson
Summer 2014
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