
edited by Faiz Rahman

VISTAS IN NANOFABRICATION

VISTAS IN NANOFABRICATION

edited by Faiz Rahman

VISTAS IN NANOFABRICATION

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Vistas in Nanofabrication

Copyright © 2013 by Pan Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4364-56-0 (Hardcover) ISBN 978-981-4364-57-7 (eBook)

Printed in the USA

Contents

1.	Nanosphere Lithography for High-Density			
	Nanopatterning			
	Hirotaka Oshima			
	1.1 Introduction			
	1.2 Collo	idal Self-Assembly for Nanopatterning	4	
	1.2.1	Colloids	4	
	1.2.2	Formation of Colloidal Crystals	5	
		Control of Colloidal Crystal Lattices	6	
		Template-Directed Colloidal Self-Assembly	8	
		High-Density Ordered Nanosphere Arrays	9	
	-	Density Nanosphere Lithography	11	
		Colloidal Arrays as Lithographic Masks	11	
		Material Deposition	13	
		Substrate Etching	14	
		High-Density Nanopattern Transfer	16	
		re Prospects and Applications	17	
	1.4.1	Challenges and Future Directions	17	
	1.4.2	Possible Applications	19	
2.	Dry Etching of Semiconductors at the Nano-			
	and Micro-Scale			
	S. J. Peart	on		
	2.1 Intro	duction	29	
	2.2 Dry E	Etching	30	
	2.2.1	Mechanisms of Dry Etching	30	
		2.2.1.1 Sputtering	31	
		2.2.1.2 Purely chemical	31	
		2.2.1.3 Ion-enhanced energetic mechanism	31	
		2.2.1.4 Ion-enhanced inhibitor mechanism	31	
		Etching Techniques	31	
	2.3.1	Ion Milling	32	
	2.3.2	Plasma Etching	32	
	2.3.3	Reactive-Ion Etching	32	
	2.3.4	Reactive-Ion-Beam Etching	33	

	2.4 Plasma Chemistries			
	2.5	Plasma Reactors	35	
		2.5.1 Reactive-Ion Etching	36	
		2.5.2 High-Density Plasmas	36	
		2.5.3 Chemically Assisted-Ion-Beam Etching	38	
		2.5.4 Plasma Chemistries	39	
		2.5.4.1 Cl ₂ -based	39	
		2.5.4.2 I_2 and Br_2 based	43	
		2.5.4.3 CH ₄ /H ₂ /Ar	43	
		2.5.5 Sidewall Morphology	44	
		2.5.6 Endpoint Detection	44	
		2.5.7 Selectivity	46	
	2.6	Conclusions	47	
3.	Nar	noscale Split Ring Resonator-Based		
		tamaterials: Fabrication Techniques,		
		perties, and Applications	49	
	Bas	udev Lahiri, Scott G. McMeekin, Richard M. De La Rue,		
	and	Nigel P. Johnson		
	3.1	Introduction	50	
	3.2	The Split Ring Resonator	51	
		3.2.1 The Magnetic Response of SRRs	53	
	3.3	Fabrication of SRR Structures	55	
		3.3.1 Modelling and Reflectance Measurements	58	
		High Frequency Saturation of SRR	60	
		Effects of Different Metals on SRR Response	60	
		Asymmetric Split Ring Resonators	64	
		Detection of Thin Layers of PMMA	68	
	3.8	Summary and Conclusions	72	
4.	Nai	nofabrication Technologies for Surface		
	Tex	turing of Gallium Nitride Photonic		
	Cry	stal Light-Emitting Diodes	75	
	Faiz	z Rahman, Ali Z. Khokhar, Keith Parsons,		
	and	Ian M. Watson		
		Introduction	76	
	4.2	PhC Nanofabrication with Direct-Write		
		e-Beam Lithography	80	
	4.3	PhC Nanofabrication with Rigid-Stamp	<i>c</i> -	
		Nanoimprint Lithography	82	

		4.3.1	Heat and Pressure NIL	83
		4.3.2	Flash NIL	84
	4.4	PhC N	Vanofabrication with Flexible Stamp	
		Nano	imprint Lithography	85
	4.5	Dry E	tching for Pattern Transfer	88
	4.6	Sumn	nary	94
5.			Formation of Nanowires: A Route to	
	-		ee Nanowire Growth and Device	
	Fab	ricati	on	97
	Jin	Seo No	h, Wooyoung Shim, Jinhee Ham,	
	and	l Wooy	oung Lee	
	5.1	Intro	duction	97
	5.2	0n-Fi	lm Formation of Nanowires	98
	5.3	Appli	cability of the OFF-ON Method to Diverse	
		Nano	wires	100
		5.3.1	Bi Nanowires	100
			Bismuth Telluride Nanowires	102
	5.4	Contr	ol over the Size and Density of Nanowires	104
		5.4.1	Nanowire Diameter	104
		5.4.2	Nanowire Length	105
		5.4.3	Nanowire Density: Type of Substrate	106
		5.4.4	Nanowire Density: Film Deposition Rate	107
		5.4.5	Nanowire Density: Film Area and	
			Substrate Patterns	108
	5.5		ssembled Lateral Interconnects	109
		5.5.1	Needs for Self-Assembled	
			Lateral Interconnection	109
		5.5.2	Self-Assembled Lateral Interconnection	
			Using the OFF-ON Method	110
		5.5.3	Lateral Bi Interconnection Between	
			two Cr/Bi Electrodes	110
		5.5.4	Electrical Properties of Lateral Bi	
		_	Interconnects	111
	5.6	Sumn	nary	112
6.	Nar	iotren	ches: An Optical Lithography Process	
	for High-Aspect-Ratio sub-100 nm Gaps 1			115
	Jean-Francois Dayen, Vina Faramarzi, and Bernard Doudin			
	6.1 Introduction 11			116

6.2 Experimental Details	119
6.2.1 Fabrication of the Electrodes	119
6.2.2 Nanoparticle Synthesis	120
6.2.3 Langmuir–Blodgett Film Preparation	120
6.2.4 Microsphere Preparation	121
6.2.5 Electrical Measurements	121
6.3 Results and Discussion	121
6.3.1 Nanotrench	121
6.4 Demonstration Devices	123
6.4.1 Highly Resistive Magnetic Nanoparticles	
Arrays for Magnetoresistive Devices	123
6.4.2 High-Current Devices	125
6.5 Conclusion	127
7. High-Aspect-Ratio Metallic Nanostructures for	
Transparent Electrodes	133
Joong-Mok Park, Xinyu Liu, Wai Leung, Kristen Constant,	
Alan Russell, and Kai-Ming Ho	
7.1 Introduction	134
7.2 Fabrication of Nanowire Using Polymer Templates	134
7.2.1 Polymer Template Fabrication	134
7.2.2 Metal Deposition	137
7.3 Characterization of Nanowires	138
7.3.1 Transmission Electron Microscopy	138
7.3.2 <i>In situ</i> Grain Growth	140
7.4 Shadow Angle Deposition	141
7.4.1 Shadow Deposition of Metal Nanowires	141
7.4.2 High-Aspect-Ratio Metallic	4.40
Structures by Ar Etching	142
7.4.3 Electrical and Optical Properties	143
7.5 Conclusions	144
8. Fabrication of Nanogap Electrodes by Electroless-	
and Electro Deposition	147
Luis De Los Santos Valladares, Angel Bustamante	
Domínguez, Thanos Mitrelias, Crispin H.W. Barnes,	
J. Albino Aguiar, and Yutaka Majima	
8.1 Introduction	148
8.2 Nanogap Electrodes Obtained by	
Electroless Deposition	150

		8.2.1	Fabrication of Gold Nanogaps	151
			8.2.1.1 The electrolyte	152
			8.2.1.2 Nanogap formation	153
	0.0		Characterization	154
	8.3		gap Electrodes Obtained by Electrodeposition	156
		8.3.1	Fabrication of Nickel Nanogaps	159
			8.3.1.1 The electrolyte	159
		0 2 2	8.3.1.2 Nanogap formation	162
		8.3.2	Characterization	165
9.			er-Scale Processing by Tribological	4
			d Its Potential Applications	175
	Shojiro Miyake and Mei Wang			
			duction	175
	9.2		processing Methods and Tribology	176
			AFM Nanoprocessing	176
			Nanotribology and Nanofabrication	178
9.3 Tribomechanical Processing and			4 = 0	
Application of Etching Mask for Silicon			179	
	9.4 Nanofabrication and its Application based on the Structure of the Workpiece Material			100
			-	182
		9.4.1	Nanoprocessing of Layered Crystal	100
		0 4 2	Materials at the Layer Unit	182
		9.4.2	Nanoprocessing of Nanoperiod	184
		0 4 2	Multilayer Films	184
		9.4.3	Application of AFM to Ultrahigh-Density	100
		044	Memory Application of Nano and Micromachines	186 187
			Application of Standard of Length Scale	187
	05		usions	109
	9.5	COLL	usions	
10.			erial Integration on CMOS Platform	193
			ntra, Prasanta Kumar Guha, and Florin Udrea	
			duction	193
			structure Fabrication	194
-			S and Nanomaterials	194
			Advantages of Integration	195
			Integration Challenges	195
-			material Synthesis on CMOS Platform	196
	-	10.4.1	Hydrothermal Method	196

10.4.2 Local Growth Technique	197	
10.4.3 Flame Spray Pyrolysis	201	
10.4.4 Aerosol-Assisted Chemical Vapour Deposition	203	
10.4.5 Inkjet Printing/Spray Coating	203	
10.5 Conclusion	204	
11. Focused Ion Beam Fabrication of Metallic	207	
Nanostructures	207	
Michal Urbánek and Tomáš Šikola	207	
11.1 Introduction		
11.2 Focused Ion Beam Systems	208	
11.3 Milling of Metallic Thin Films	209	
11.3.1 Evolution of the Milling Process for		
Metallic Thin Film on Silicon Substrate	211	
11.3.2 Estimation of the Ion Dose Needed for		
Thin Film Removal	213	
11.4 Influence of Ion Beam Parameters	213	
11.5 Contacting the Structures	216	
11.6 Summary	217	
12. Nanotechnology Showcase	221	
Size-Tunable Silicon Nanopore Arrays	221	
Self-Organizing Array of Spiral Nanoribbons	223	
ZnO Nanowire Photonic Arrays	225	
Nanostructure Cu_2O Films: Preparation,		
Characterization, and Properties	227	
Chemical Fabrication of Nanogaps for		
Single-Molecule Electronics	229	
Noncatalytic Synthesis of Carbon Nanotubes on SiC	231	
Magnetic Microtags for Color MRI	233	
Solution-Processible Fabrication of		
Gold Nanostructures	235	
Resonant Tunneling Nanotransistor from		
III-V Compound Semiconductor Heterostructures	238	
Index	241	

Preface

New materials and devices derived from the application of manufacturing technologies where objects are manipulated at ultra-small scales are becoming gradually commonplace. Modifying materials at micrometre and nanometre scales is often crucial to endowing them with properties that are not found in the base material. Sometimes this is done to gain economic and performance benefits, such as in the manufacture of integrated circuits with eversmaller features. At other times, nanofabrication is utilised to obtain completely new functionalities, such as in making antireflection structures on plastics and glasses. The relatively new discipline of nanotechnology is now finding increasing use in the manufacture of a wide variety of products, ranging from pharmaceuticals and performance chemicals to apparels and electronic devices. This range continues to expand as new process tools and technologies are developed in research laboratories around the world, on a daily basis. It is now a firmly established fact that the importance of nanotechnology will only increase in the years to come as it makes further inroads into almost every area of human activity. We are already seeing the migration of nanofabrication technologies from the traditional area of electronics manufacturing to other fields such as environmental protection, high-performance sporting goods, manufacture of decorative objects, and other products for everyday use. Despite the increasing use of nanotechnology for producing such goods, its primary application remains in electronics and optoelectronics. This is understandable because further increases in performance of electronic and optoelectronic components will come, to a large extent, from the application of clever nanofabrication techniques in device manufacture. Thus, for example, the continued miniaturization of silicon integrated circuits will become impossible as minimum feature dimensions gradually decrease below 10 nm and then new materials and device architectures - driven by continuing advances in nanotechnology — will be needed to maintain the evolution of circuits and devices towards even higher performance levels. For reasons such as this, a great deal of effort

is being invested in developing and identifying new materials and processes that can sustain the industries of the future. The contents of this book provide a glimpse of the work being carried out by nanotechnologists in developing novel technologies for material manipulation and structural nanofabrication. Each chapter presents the recent work of a leading researcher or a research group working at the frontiers of nanotechnology research. A special section at the end of the book presents a collection of micrographs that highlight a variety of structures being created at micron and sub-micron scales. Following is a brief description of the chapters.

The use of nanosphere lithography for patterning dense surface features is described by Hirotaka Oshima from Fujitsu Laboratories in Chapter 1. This is followed by a detailed overview of dry etching technologies for semiconductor manufacture in Chapter 2, by S. J. Pearton from the University of Florida. Basudev Lahiri from the National Institute of Standards and Technology describes his work on split ring-based metamaterials in Chapter 3. I and my colleagues present our work on the fabrication of nanotextured photonic crystal light-emitting diodes in Chapter 4. Chapter 5, contributed by Jin-Seo Noh and colleagues from Yonsei University, deals with the fabrication of nano-wires. A nanotrench-based process for advanced photolithography is described in Chapter 6, by Jean-Francois Dayen and colleagues from the University of Strasbourg. Joong-Mok Park and colleagues from a US research consortium in Iowa describe their work on high-aspect-ratio structures for transparent electrodes in Chapter 7. The fabrication of nano-gap electrodes by novel nanofabrication techniques is described in Chapter 8 by Luis De Los Santos Valladares from an international research collaboration. Chapter 9 contains a description of nanometre-scale processing by tribological techniques by Shojiro Miyake from Nippon Institute of Technology and Mai Wang from the OSG Corporation. Sumita Santra and colleagues from the University of Cambridge and the Indian Institute of Technology describe the integration of nanomaterials in CMOS processing technology in Chapter 10. The next chapter, by Michal Urbanek and Tomáš Šikola from Brno University of Technology describes the use of focussed ion beam techniques for making metallic nanostructures. The section titled "Technology Showcase" presents a compilation of micrographs from the world of nanotechnology.

In putting together this collection of contemporary work on nanofabrication technologies, the editor and the contributors hope to highlight some of the most rapidly developing techniques for microand nano-manipulation for modern nanoscale device fabrication. This collection of chapters from leading technologists provides a good survey of the state of the art in some of the most active research areas in nanotechnology at present. We hope that this book will be of use to both new researchers involved with nanofabrication technologies and practicing engineers and scientists who wish to update their knowledge in this fast-changing field.

Faiz Rahman

Glasgow, United Kingdom June 2012