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Preface

Liquids are omnipresent in our everyday life, playing a key role in

many domains. Water is, for example, the unique and unavoidable

environment necessary for biological activities. In this context, many

chemical reactions that sustain metabolic and anabolic activity

are performed in confined environments. For instance, protein

assemblies define ion channels with nanometre size, which regulate,

with a high selectivity, the flow of ions across the membrane of

cells. Therefore, many challenging objectives to understand and

mimic biological reactions are ahead and require the development

of techniques to confine liquids and study their behavior down to

the nanoscale. In ambient conditions, capillary effects also become

important at micro- and nanometer scale because of capillary

condensation that leads to droplets nucleation when a gas phase

is tightly confined between two surfaces. Upon downsizing, the

capillary adhesion resulting from these liquid bridges scales as r
(typical extension of the meniscus) and therefore becomes pre-

dominant over volume (r3 dependence) or surface (r2 dependence)

forces. This size dependence accounts for the reinforcement of sand

castles’ stability but also for the detrimental effects of stiction in

microelectromechanical systems (MEMS) or the imaging artifacts in

ambient atomic force microscopy (AFM).

The description of liquids interfaces, in particular in the presence

of solid surfaces, is an old question at the confluent between

physics, chemistry, and engineering. It was examined by pioneers

like Young and Laplace, whose formalism remains the basis of

the description of capillarity. The dynamics of wetting has been

intensively studied in the second part of the twentieth century, when

many experiments and theories were developed. These studies

emphasized the importance of a precise description of boundary
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conditions. For instance, controversial discussions appeared on

the necessity to go beyond the classical assumption of a no-slip

condition at a solid–liquid interface. In the case of liquid spreading,

this condition, coupled with classical hydrodynamics, leads to a

stress singularity and a nonphysical stress divergence at the contact

line. This problem was circumvented by the introduction of cut-

off lengths that are still poorly defined and provoke debate. The

development of nanosciences concepts and tools has opened a

new field focused on micro- and nanofluidics. New experiments

are performed between mesoscopic and molecular scales, the

interpretation of which emphasizes the need of a microscopic

description of liquid interfaces.

Contrary to solids, which benefit from a large panel of characteri-

zation techniques, liquids are more difficult to probe experimentally

at the nanometer scale. Owing to their intrinsic dynamic nature

and their softness, it is very challenging to investigate them

with sufficient spatial and time resolution, while minimizing the

influence of the probe. Surface forces apparatus (SFA) represented

a real breakthrough, in the late 1960s, as it allowed the direct

determination of liquid structure down to molecular scale. Atomic

force microscopes later on brought the lateral resolution leading to

a broad range of applications. The development of nanotechnology

also provided an impressive downscaling of methods, enabling the

manipulation of liquids down to nanometer scale, as demonstrated

by the fast-growing nanofluidics field. Theoretically, a comprehen-

sive description of liquids spanning from the molecular point of view

to macroscopic fluid dynamics remains an open question.

The aim of this book is to provide a state-of-the-art review of

the recent advances in the study and manipulation of liquids at

submicron or nanometer scale. The chapters gathered in this book

give a timely description of what is new in wetting, capillarity, and

hydrodynamics and what could be the questions when nanometer

scale matters. The book is organized in three parts.

In the first part the main fundamental aspects of the description

of liquids interfaces at nanometer scale are discussed. In chapters

1 and 2, two essential elements of the liquid–solid interfaces are

described, namely, the liquid structuration and the hydrodynamic

slippage that occur at a solid wall. In the case of liquid droplets,
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and more generally of wetting phenomena, another boundary

condition appears at the contact line where three phases—solid,

liquid, and vapor—meet. In chapter 3 the basic concepts of wetting

are reviewed beyond the usual description of contact line, where

Young equation applies, emphasizing the role of long-range forces

and wetting films and their influence when scaling down to the

nanoscale. The next two chapters are dedicated to thin liquid films,

which play a crucial role in many industrial processes, such as

coatings or fabrication of microelectronic devices. The study of the

stability of liquid films highlights the drastic role of long-range

forces in their rupture mechanism (chapter 4). Thin films are also

inherent to complete wetting, for example, in the form of a precursor

film with molecular or mesoscopic thickness spreading ahead

from the macroscopic droplet. The specific behaviors of nematic

liquid crystal films due to an additional long-range orientation

order are examined in chapter 5. Nanodroplets and nanobubbles

obtained when decreasing the lateral size of the liquid structure

are then discussed. The statics and dynamics of liquid nanodroplets

presented in chapter 6 show a transition from the classical spherical

shape to a regime specific to nanometer dimensions where long-

range forces dominates. Surface nanobubbles also show intriguing

properties, such as their stability, which are less understood than

microbubbles, the dynamics of which is perfectly controlled and

understood, as reviewed in chapter 7. The peculiar properties

of surface nanobubbles can also be probed using acoustic shear

waves demonstrating the interest of this method to investigate

the mechanical properties of soft interfaces (chapter 8). Another

nanoscale form of liquid structure is the nanomeciscus, which

appears spontaneously between surfaces due to capillary conden-

sation. The mechanical properties of these menisci are reviewed

in chapter 9, mainly focusing on the framework of AFM studies.

Nanomenisci play a crucial role in the wetting of nanotubes and

nanochannels, an ultimate objective of nanofluidics. The statics and

dynamics of liquid flows are presented in chapters 10 and 11, both

in the case of synthetic carbon, inorganic nanotubes, or organic

nanotubes and in nanochannels fabricated by nanolithography

techniques. Many questions arise from these experiments among

which the breakdown of the continuum model is at the first place.
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The second part of the book is dedicated to the manipulation of

liquids to transport, position or modify materials at the nanometer

scale. The deposition of molecules or nanoobjects on functional

nanodevices is a challenging issue of nanosciences. Since the

objects of interest are often in solution, the manipulation of liquids

is of crucial importance in the framework of nanopatterning.

Conceptually, the simplest way to deposit molecules is to decrease

the size of a droplet down to dimensions where it only contains a few

molecules. The methods developed with that aim are reviewed in

chapter 12, with special emphasis on an AFM-based nanodispensing

technique. Liquid nanomenisci spontaneously forming between an

atomic force microscope tip and a surface can also be used as a

nanoelectrochemical cell, to realize oxidation nanolithography, as

demonstrated in chapter 13, where the influence of an electric field

on the stability of liquid nanobridges is detailed. In addition to these

serial methods, it is shown that the control of wetting processes

provides unique methods to pattern surfaces, at a large scale, in

a parallel fashion. For example, dewetting leads to self-organized

patterns with well-defined shapes and arrangements (chapter 14).

Self-assembly resulting from the combination of convective flow and

capillary forces can also provide a method to organize colloids on

a surface in one-dimensional (1D), two-dimensional (2D), or three-

dimensional (3D) arrangements (chapter 15). Finally, the capillary

force exerted by a contact line can be used to manipulate high-

aspect-ratio nanoobjects such as DNA or nanotubes on a surface.

This combing technique is detailed in chapter 16.

The third part of the book is dedicated to AFM experiments

investigating biological samples in liquid. The creation of near-field

machines, scanning tunneling microscope–atomic force microscope,

is most often perceived as the discovery that opened the new area

of nanosciences and nanotechnologies. Since the beginning, force

microscopy was found as a key instrumentation to study biolog-

ical samples. In particular, force microscopy and its derivatives

provide the opportunity to proceed to a multiscale investigation

of structures and functions of biological systems. Therefore, over

the last two decades much effort has been dedicated to use force

microscopy in liquid environments. These numerous attempts have

led to a significant progress in imaging delicate materials such
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as molecules, filaments, proteins, and membranes. Among those

challenges, the sample preparation techniques are crucial, as well

as the achievement of a good force balance between the tip and

materials to record images with nanometer-scale resolution, as

shown in chapter 17. The use of dynamical AFM is currently the

most appropriate way to ensure a gentle contact and to minimize

the amount of lateral force when scanning a soft object. However, the

use of an oscillating cantilever in a liquid environment faces several

difficulties, among which is the need to develop new cantilever-

driving schemes to ensure a proper oscillating behavior of the

cantilever and to keep a good sensitivity down to a few picoNewtons,

as described in chapter 18. Biological functions are dynamic in

essence; thus we need to increase the scan rate, as is done with high-

speed AFM, to access conformational change of active molecular

motors or enzymes. Here again locks have to be overcome, especially

in liquid, as, for instance, to minimize hydrodynamic forces, still

increasing the resonant frequency of the MEMS. Over the last

few years, significant improvements have been made, leading to

impressive results, as given in chapter 19.

The papers compiled in this book show the impressive achieve-

ments performed in the recent years in the study of liquid

behavior at nanometer scale, the understanding of which has

important implications in a wide range of fields such as biology,

coatings, microfabrication technology, corrosion, cavitation, and

earth sciences. Moreover, the precise description of liquid interfaces

down to nanometer scale may help to answer open questions such

as the dissipation processes that rule the spreading of liquids. It also

questions the validity of continuum models when scaling down to

molecular scale, a topic that should be a source of many advances in

the coming years.

Thierry Ondarçuhu
Jean-Pierre Aimé
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