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Preface

As nanoscience matures into nanotechnology, products containing 
nanomaterials are entering our lives. For those of us who work 
with	nanomaterials	professionally,	it	is	an	exciting	time,	filled	with	
pride and expectation. However, for those outside the research 
community, this is a time of change that can be very confronting. 
What is nanotechnology, and what impact will it have upon our 
lives? How do we reconcile with the notion of these new “functional” 
pieces of matter that are too small to defect, or avoid. Irrespective 
of our perspective, it is both humbling and comforting to realize 
nanomaterials are actually not as new as we think, and that Nature 
has been producing nanomaterials since the dawn of time. This is a 
fascinating realization that inevitably leads to these questions: What 
are these natural nanomaterials made of? What do they look like? 
Where	can	we	find	them?	And	the	most	tantalizing,	what	can	they	
do?
 In this book, some of the leading researchers in the world share 
their studies of Nature’s nanostructures, and we see that there is 
a lot to be learned from the elegant ways that Nature deals with 
the	 complexity	 of	 the	 nanoscale.	While	 we	 struggle	 to	 refine	 our	
laboratory techniques, Nature’s own laboratory has perfected the 
production of a range of highly selective nanomaterials. We are 
first	introduced	to	this	area	by	Michael	F.	Hochella	and	our	plenary	
authors, who describe a variety of naturally occurring inorganic 
nanoparticles, in the context of the general assessment and a 
global budget for one of Earth’s last unexplored major geochemical 
components.
 We follow this introduction with a section dedicated to 
inorganic nanostructures produced on Earth (often referred 
to as nanominerals), opening with a discussion of physical and 
chemical properties of nanominerals by keynote author R. Lee 
Penn. This is followed by a detailed account of some of the most 
ubiquitous nanoparticles on Earth, iron oxides, which can form in 
a variety of different sizes, shape, structures and magnetization 
states (depending upon their environment). Of course, the study of 

Preface



nanominerals is not restricted to experimental techniques, and Salvy 
Russo and Andrew Hung describe ways that advanced computer 
simulation and theoretical modeling can help us determine how to 
model and predict how different sizes, shapes, and structures are 
formed. We then move on to nanomaterials that are rarer in Nature, 
such as gold nanoparticles in ores, described by Robert Hough 
and colleagues, and diamondoids extracted from oil, described by 
Christoph Bostedt and colleagues. In all of these cases, the natural 
nanomaterials have “positive curvature” (that is, they present as 
small solid particles); so we conclude this section by considering 
the	opposite	position.	The	 final	 chapter	of	 this	 section	by	Huifang	
Xu describes natural nanomaterials with “negative curvature,” and 
explains the role of these nanosize pores (or voids) in regulating 
reactivity and transport of uranium in subsurface sediments.
 Nanomaterials are not the only thing Nature has beaten us to; 
Nature has developed its own nanotechnology too. In Part II, we 
reveal some of the ways that Nature combines nanoparticles to form 
more	complex	structures,	each	with	a	specific	application	in	mind.	
The vast majority of these applications are in the realm of biology, 
and keynote authors Jun Wu, Juming Yao, and Yurong Cai describe 
how our own bodies contain bones with hierarchical structure based 
on nanoparticles. We then turn our attention back to iron oxides and 
see how the smallest life forms use these magnetic nanoparticles, in 
a chapter by André Körnig and Damien Faivre. Bacteria are not the 
only life forms to use magnetic nanoparticles, and Ilia A. Solov’yov 
and Walter Greiner explain the properties and function of nanoscale 
magnetoreceptors in birds. In each case, these nanoparticles have 
not been inhaled, ingested or inserted but are formed in situ by 
the organism, in an environment that is very different from that of 
nanominerals. To understand the formation mechanisms, computer 
simulations are again instructive, and John H. Harding and colleagues 
explain how modeling the nucleation and growth of biomaterials 
to aid in understanding. This section concludes with a chapter by 
Ainsley E. Seago and Vinodkumar Saranathan, who focus on some of 
Nature’s nanotechnology residing outside the body, in the beautiful 
photonic crystals decorating the wings and exoskeletons of beetles.
	 Both	 Earth	 and	 its	 inhabitants	 have	 lived	with	 (and	 benefited	
from) Nature’s nanostructures for millennia, but as our Part III 
keynote authors Frans J. M. Rietmeijer and Joseph A. Nuth show us 
that some nanoparticles are “out of this world.” While nanoparticles 
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forming in space are almost certainly well beyond our reach, they are 
not beyond our understanding, and we can still learn a lot about the 
large molecules and nanograins in interstellar space, as described by 
A. G. G. M. Tielens, and those closer to home in our own solar system, 
as	described	by	Ingrid	Mann.	In	the	final	chapter	of	this	section,	we	
converge still closer to Earth, and Tuukka Petäjä and colleagues 
introduce us to the formation and growth of nanoparticles in the 
atmosphere, and even the air we breathe.
 So as we can see, nanomaterials are all around us: in the Earth, 
the air and the heavens. But does that mean that all nanomaterials 
behave in these predictable ways? Of course not. The majority of 
the nanotechnology community is focused on producing an array of 
different nanomaterials that do not exist in Nature and do things that 
natural nanostructures cannot. These “engineered” nanomaterials 
can have very different properties and can respond to the natural 
environment in a very different way. However, once these engineered 
nanomaterials enter the natural world, they become a permanent 
part of it, and as we increase the recyclability and biodegradability 
of our products, the probability of this occurring approaches 100 
percent.
 For this reason, Part IV of this book focuses on the interaction 
of manmade nanoparticles with the natural world. At this stage, 
these interactions are dominated by inadvertently and intentionally 
produced nanomaterials (a consequence of modern life) as 
described in our keynote chapter by Pratim Biswas and colleagues. 
A more detailed account of the nanoparticles on and near roadways 
(which many of us travel on everyday) is then provided by Yifang 
Zhu. Guodong Yuan and Shin-Ichiro Wada then discuss allophane 
and imogolite nanoparticles in soils and describe the role they play 
in environmental remediation and control. We conclude the book 
with a study of the interaction and transformation of laboratory-
synthesized engineered nanostructures in the natural environment 
by Priyanka Bhattacharya, Emppu Salonen, and Pu Chun Ke, where we 
are left to ponder whether Nature will cope with our nanostructures 
as well as we have coped with hers.
	 This	 book	 represents	 the	 first	 collection	 of	 its	 type,	 bringing	
together studies from astronomy, physics, chemistry, materials 
science, engineering, geology and geophysics, environmental 
science, agricultural science, entomology, molecular biology and 
health. It would not have been possible without the tireless efforts 
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of all involved, and we would like to thank all the authors for their 
wonderful contributions. We would also like to thank Dr. Lin Lai for 
his assistance in reviewing the chapters and Yunjing Zhang for her 
meticulous help in editing the book.
 We hope you enjoy learning all about Nature’s nanostructures.

Amanda S. Barnard
Haibo Guo

xviii Preface



B
arn

ard
 

G
u

o
N

atu
re’s N

an
o

stru
ctu

res

,!7IJ8B4-dbgici!
ISBN-13 978-981-4316-82-8

V288

Edited by
Amanda S. Barnard & Haibo Guo

Nature’s
N a n o s t r u c t u re s

“At a time when we are concerned about the potential hazards of engineered nanomaterials, 
this book gives a timely and delightful overview of the variety of nanoparticles that exist in 
our environment — from noble metal nanoparticles in ore systems and nanodust in the solar 
system to magnetic nanoparticles in homing pigeons and photonic crystals in beetles. It is 
an enjoyable and a useful companion for anyone interested in knowing about the potential 
hazards of nanomaterials and those seeking inspiration from nature to create functional 
materials.”

Dr Ai Lin Chun
Senior Editor, Nature Nanotechnology

While humanity strives to synthesize and utilize functional nanomaterials, nature’s own 
laboratory has perfected the production of a range of highly selective nanomaterials. 
Natural nanomaterials (and even natural nanotechnologies) are all around us, and this 
ubiquity inevitably raises questions such as What are these natural nanomaterials made 
of? Where can we find them? What can they do? Answering these questions will lead to 
a better understanding of the world around us and facilitate new and environmentally 
friendly ways of creating and manipulating nanoscale materials for the next generation of 
new technologies. 

This book represents the first collection of its type and is truly multidisciplinary. The 
compilation brings together studies from astronomy, physics, chemistry, materials 
science, engineering, geology and geophysics, environmental science, agricultural science, 
entomology, molecular biology, and health and is therefore an invaluable resource for 
learning how various scientists approach similar problems.

Amanda S. Barnard is leader of the Virtual Nanoscience Laboratory at the 
Commonwealth Scientific and Industrial Research Organisation (CSIRO), 
Australia’s national science agency. She has a BSc and PhD in physics from 
RMIT University, Australia, and has held research positions at Argonne National 
Laboratory, USA, and the University of Oxford, UK. Using thermodynamic 
theory and first-principles computer simulations, she is a pioneer in the 
mapping of nanomorphology and the environmental stability of nanomaterials 
(thermodynamic cartography) and in the development of structure/property 
relationships for predicting the reliability of nanoparticles in high-performance 
applications.

Haibo Guo is a postdoctoral fellow and an early-career researcher at Virtual 
Nanoscience Laboratory, led by Dr Amanda Barnard. He received his BS in 2001 
and PhD in 2006 from Tsinghua University, Beijing, China. His research interests 
include modeling and simulation of surfaces and interfaces in environmental 
and energy sciences.




