Hiroyuki Shima Motohiro Sato

Elastic and Plastic Deformation of Carbon Nanotubes

Elastic and Plastic Deformation of Carbon Nanotubes

Hiroyuki Shima Motohiro Sato

Elastic and Plastic Deformation of Carbon Nanotubes

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Elastic and Plastic Deformation of Carbon Nanotubes

Copyright © 2013 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4310-75-8 (Hardcover) ISBN 978-981-4364-15-7 (eBook)

Printed in the USA

To Rena and Shiho

Contents

Preface			xiii		
1	Introduction				
	1.1	Carbon Nanotube: The World's Stiffest Material	1		
	1.2	Discovery before 1991: Who Found It First?	4		
		1.2.1 Matter in Issue	4		
		1.2.2 Historical Facts	5		
		1.2.3 Closing Remark	7		
2	Young's Modulus Measurement				
	2.1	Introduction	9		
	2.2	Thermally Induced Vibration			
	2.3	Electrically Induced Vibration			
	2.4	Singly Clamped Deflection			
	2.5	Doubly Clamped Deflection	15		
	2.6	Tensile Loading	19		
3	Ator	nistic Modeling	21		
3.1 I		Introduction	21		
	3.2	3.2 Methodology			
		3.2.1 Ab initio Method	22		
		3.2.2 Tight-Binding Method	23		
		3.2.3 Molecular Dynamics Method	24		
	3.3	Comparison: Quantum or Classical?	24		
	3.4 Interatomic Potential		25		
		3.4.1 Tersoff and First-Generation Brenner Potential	25		
		3.4.2 Second-Generation Brenner Potential	27		
	3.5	Young's Modulus Prediction	29		
	3.6	Via <i>ab initio</i> Approach	31		

	3.7 Via Tight-Binding Approach				
	3.8	Via MD Approach	34		
		3.8.1 Dependence on Diameter and Chirality	37		
4		tinuum Modeling	39 39		
	4.1 Introduction				
		Young's Modulus	40 42		
		Axial Rigidity for Bars and Trusses			
		Bending Rigidity for Beams			
		Axial and Bending Rigidity for Shells			
	4.6	Young's Modulus Prediction	46		
		4.6.1 C-C Bond Modeling Using Truss and Beam			
		Elements	46		
		4.6.2 Modeling Using Beams and Shells	48		
		4.6.3 Bridging Atomistic and Continuum Modeling	52		
		Cauchy–Born Rule	53		
		Multishell Nanotube Elasticity	56		
	4.9	Crystal of SWNTs	56		
5	Buckling				
5	Buc	kling	59		
5	5.1	Better Bend than Break	59		
5	5.1 5.2	Better Bend than Break Resilience and Sensitivity	59 61		
5	5.1 5.2	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs	59 61 62		
5	5.1 5.2	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation	59 61 62 62		
5	5.1 5.2	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence	59 61 62 62 64		
5	5.1 5.2 5.3	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending	59 61 62 62 64 65		
5	5.1 5.2	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs	59 61 62 62 64 65 67		
5	5.1 5.2 5.3	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging	59 61 62 62 64 65 67 67		
5	5.15.25.35.4	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern	59 61 62 62 64 65 67 67 68		
5	5.15.25.35.4	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern Twist Buckling	59 61 62 62 64 65 67 67 67 68 71		
5	5.15.25.35.4	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern Twist Buckling 5.5.1 Asymmetric Response	59 61 62 64 65 67 67 67 68 71 71		
5	 5.1 5.2 5.3 5.4 5.5 	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern Twist Buckling 5.5.1 Asymmetric Response 5.5.2 Non-Trivial Responses	59 61 62 64 65 67 67 67 68 71 71 73		
5	 5.1 5.2 5.3 5.4 5.5 5.6 	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern Twist Buckling 5.5.1 Asymmetric Response 5.5.2 Non-Trivial Responses Universal Non-Linear Scaling	59 61 62 62 64 65 67 67 68 71 71 73 75		
5	 5.1 5.2 5.3 5.4 5.5 	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern Twist Buckling 5.5.1 Asymmetric Response 5.5.2 Non-Trivial Responses	59 61 62 64 65 67 67 67 68 71 71 73		
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern Twist Buckling 5.5.1 Asymmetric Response 5.5.2 Non-Trivial Responses Universal Non-Linear Scaling	59 61 62 62 64 65 67 67 68 71 71 73 75		
	5.1 5.2 5.3 5.4 5.5 5.5 5.6 5.7 Topo	Better Bend than Break Resilience and Sensitivity Bend Buckling of SWNTs 5.3.1 Kink Formation 5.3.2 Diameter Dependence 5.3.3 Transient Bending Bend Buckling of MWNTs 5.4.1 Ripples Emerging 5.4.2 Yoshimura Pattern Twist Buckling 5.5.1 Asymmetric Response 5.5.2 Non-Trivial Responses Universal Non-Linear Scaling Radial Corrugation under Pressure	 59 61 62 64 65 67 68 71 73 75 77 		

	6.3	Formation Energy	84
	6.4	6.4 Strain-Induced Defect	
		6.4.1 Atomistic View	86
		6.4.2 Energetics	88
	6.5	Direct Micrograph Image	90
	6.6	Curvature Generation	91
	6.7	Fusion of Adjacent Nanotubes	96
7	Frac	99	
	7.1	Failure Strength	99
	7.2	Tensile Load Measurements	100
	7.3	Discrepancy Resolved	101
	7.4	One-Atom Vacancy Effect	102
	7.5	Large-Hole Effect	104
8	Supe	107	
	8.1	Candy-Making of a Nanotube	107
	8.2	Bond Flip Mechanism	108
	8.3	From Brittle to Ductile	111
	8.4	Interdependence in the Failure Mechanism	114
	8.5	C ₂ Removal Mechanism	116
	8.6	Mono-Atomic C-Chain	118
9	Carb	oon Nanocoil	121
	9.1	Merits of Coiled Structures	121
	9.2	Synthesis of Carbon Nanocoils	123
	9.3	Microscopic Model of Carbon Nanocoils	124
	9.4	Spring Constant of Carbon Nanocoils	126
	9.5	Superelasticity of Carbon Nanocoils	127
	9.6	Coil Geometry Statistics	129
	9.7	Cushioning Effect	131
10	Irra	idiation-Based Tailoring	135
	10.	1 What Can Be Done by Irradiation?	135
	10.	2 High-Energetic Particles Workable	137
	10.	3 Self-Healing of Vacancies	138
		10.3.1 Overview	138
		10.3.2 Microscopic view	140

	10.4	Relax from a One-Atom Vacancy	142		
		10.4.1 In Armchair SWNT	142		
		10.4.2 In Zigzag SWNT	144		
	10.5				
	10.6	Internal Collapse of MWNTs	147		
	10.7	Inner-Wall Corrugation by Outer-Wall Erosion			
	10.8	Exhibition of Various Tailoring Techniques	151		
		10.8.1 Fusion of Adjacent SWNTs	151		
		10.8.2 Cutting and Bending	153		
		10.8.3 Welding into Branched Nanotubes	154		
11	Internal Sliding				
	11.1	Potential Nano-"Trombone"	157		
	11.2	Low-Friction Sliding	159		
		11.2.1 Initial Theoretical Prediction	159		
		11.2.2 Experimental Observation	160		
		11.2.3 Gigahertz Oscillator Inspired	162		
	11.3	5	163		
	11.4	Internal Rotation			
	11.5	· · · · · · · · · · · · · · · · · · ·			
		11.5.1 Mechanism	167		
		11.5.2 Oscillation Frequency Estimation	168		
		11.5.3 Perspective	170		
	11.6	Plucking a Nano-"Guitar" String	171		
12	Unzipping				
		Toward Graphene Nanoribbon Production	175		
		Acid Reaction Method	178 179		
		Plasma Etching			
	12.4	Intercalation-Induced Exfoliation			
		Catalytic Cutting			
	12.6	Current-Induced Breakdown	183		
13	Reinf	orcement Application	187		
	13.1	1 As the Ultimate Reinforced Fibers			
	13.2	Critical Challenges: Adhesion, Dispersion,			
		Alignment	188		
	13.3	8 Mixture Rules and Beyond			

	13.3.1	Mixture Rule: Long-Fiber Situation	190
	13.3.2	Shear-Lag Model: Short-Fiber Situation	192
13.4	Reinfor	cement by Millimeter-Long Nanotubes	194
13.5	13.5 Critical Length for Fiber Breaking13.6 Interfacial Coupling Strength		
13.6			
	13.6.1	Breakthrough Wanted	197
	13.6.2	Category of Interfacial Couplings	199
13.7	13.7 Pullout Test13.8 Polymer Reinforcement		201
13.8			203
	13.8.1	Solution Process	203
	13.8.2	Melting Process	203
	13.8.3	Thermosetting Process	204
	13.8.4	Functionalization Process	205
13.9	Cerami	cs and Metal Reinforcement	207
Bibliography		209	
Index			251

Preface

The key players in the materials field continually change with the times. The 19th century saw the rise of iron, followed by silicon in the 20th century. In the 21st century, nano-carbon materials look set to take center-stage.

Carbon is a rare substance that can take various structures and forms. When carbon atoms form a three-dimensional structure, their glittering beauty as diamonds captivates people. When aligned in a two-dimensional plane, carbon atoms become just black graphite and lose their sparkle. In addition to these two macroscale carbon materials, several other nano-carbon materials have been discovered in just the last 20 years, opening new horizons in physics and chemistry. It all began with the C_{60} molecule (fullerene), whose existence was predicted by Osawa in 1970 and evidenced by Kroto *et al.* in 1985. Subsequent studies, including those on carbon nanotubes by Iijima in 1991 and on graphene by Novoselov *et al.* in 2004, have had a tremendous impact, driving developments in science and engineering around the turn of the century.

Of these three types of nano-carbon materials, carbon nanotubes are attracting greatest attention in both industry and academia. Research on carbon nanotubes has focused on two characteristics not usually seen in other fields. First and foremost is the sheer breadth of the research, which encompasses physics, chemistry, materials science, electric and electronic engineering, and life science. The second characteristic is that basic research and applied research are extremely close to each other. A succession of the phenomena of interest to scientists has been discovered like a treasure chest, each leading to an innovative application or development. Thanks to these two characteristics, applied research extends as far as electronic devices, fuel cells, panel display materials and gas absorption and has seen dramatic progress. It is difficult even for experts in the field to understand the progress being made outside of their specialties.

One of the reasons why carbon nanotubes offer huge potential in so many fields is their mechanical properties, specifically the following four:

- **Rigidity**: Young's modulus in the longitudinal direction exceeds that of diamond.
- **Resilience**: The original structure is recovered with few defects after large bending or deformation.
- **Toughness**: Cracks do not easily form or advance, so carbon nanotubes retain their cylindrical shape without breaking even when a large external force is applied.
- **Anisotropy**: Reflecting the cylindrical carbon shell structure with concentric axis, they show mechanical properties with extremely large anisotropy.

In addition to these significant mechanical properties, studies have shown that mechanical deformation causes considerable changes in electronic, optical, magnetic and chemical properties. Thus, many studies on new technologies to utilize the correlation between deformation and properties are under way in various fields, including electronics, biotechnology, and material design. For example, nanoscale devices that use the changes in electrical conductivity or optical response due to deformation are one of the most popular fields in nanotechnology. Meanwhile, ultrahigh-strength materials are being developed for the next-generation infrastructure such as superhigh-rise buildings and large aerospace equipment by utilizing the high thermal and environmental resistance of nanotubes. The application of these low-density substances containing only light carbon atoms for aircraft and automobile parts is expected to raise fuel efficiency and save energy, as well as dramatically reduce exhaust gas emissions and environmental impact.

Despite so many new phenomena and technologies based on the mechanical functions of nanotubes in diverse fields, there are surprisingly few books and overall reviews of nanotubes. Independent books and review papers have tended to focus on specific topics such as quantum devices utilizing the mechanical properties of nanotubes and composite strength materials utilizing the mechanical strength of nanotubes. There have been few reports on the most basic characteristic of nanotubes, which is the unique applicability of their mechanical properties in so many fields.

This book draws on various documents to give a comprehensive overview of the research progress to date, focusing on the mechanical properties of carbon nanotubes. The first half examines minute deformations in the elastic region, reviewing the huge body of literature immediately after nanotubes were discovered to the latest results still in press, without assuming detailed background knowledge. The latter half takes a closer look at the major themes of common interest to researchers in diverse fields, such as the plastic deformation of nanotubes under extreme conditions, including giant deformation, high temperature and pressure, and electron beam irradiation. In introducing prior studies, we have minimized the number of citations to avoid exhaustive descriptions, and instead have included a good balance of visually appealing figures and photographs to assist the readers' understanding. To avoid redundancy with existing books, we have cited the latest studies being reported while this book was being written. We hope it will give readers a broad view of the mechanical properties of nanotubes and help them find new research themes.

The authors express cordial gratitude to Profs. Kousuke Yakubo, Takashi Mikami, Shunji Kanie, and Minoo H. Patel. Thanks to their strict yet devoted instruction in our young researcher ages, we were able to gain the skill required to complete this book. One of the authors, Shima, wrote part of this book within his stay at Universitat Politècnica de Catalunya in Barcelona, Spain, for almost a year, during which time Prof. Marino Arroyo and Dr. Susanta Ghosh were very kind to him. Shima also deeply thanks Prof. Emeritus Eiji Osawa, Profs. Jun Onoe, Hideo Yoshioka, Yoshitaka Umeno, and Dr. Shota Ono, as communications with them have sparked his interest in the study of nano-carbon materials. The other author, Sato, was able to complete this book with the help of Dr. M. Ahmer Wadee while working for half a year at Imperial College London. Jenny Rompas, Stanford Chong, and Arvind Kanswal of Pan Stanford Publishing encouraged us to write this book and provided continuous support. Finally, we thank our beloved wives, Rena and Shiho, and our children, Yuuka, Ayaka, Tatsuya, and Kana, for easing our fatigue through their smiles and kind words every day. We are grateful to all of them for looking after us, and for the friendships between us.

> Hiroyuki Shima Kofu, Japan Motohiro Sato Sapporo, Japan July 2013