

Fundamentals and Challenges

Edited by Serge Kernbach

Handbook of COLLECTIVE ROBOTICS

Fundamentals and Challenges

Edited by Serge Kernbach

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Handbook of Collective Robotics: Fundamentals and Challenges

Copyright © 2013 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4316-42-2 (Hardcover) ISBN 978-981-4364-11-9 (eBook)

Printed in the USA

Contents

_

Pr	reface	?		xxi		
1	Introduction to Collective Robotics: Reliability, Flexibility, and Scalability					
	Serg	ie Kernl	bach			
	1.1	Introd	duction	1		
		1.1.1	2D and 3D Ecological (Behavioral) Systems	5		
		1.1.2	Functional, Structural, and Reconfigurable			
			Systems	8		
		1.1.3	Molecular, Colloidal, and Multiparticle Systems	9		
		1.1.4	Hybrid Biotechnological Systems and Mixed			
			Societies	11		
		1.1.5	Artificial Developmental and Evolutionary			
			Systems	14		
	1.2	Towa	rds Taxonomy	16		
		1.2.1	Cooperative vs. Networked vs. Swarm vs.			
			Small World	21		
	1.3	Behav	vior, Emergence, and Artificial Self-Organization	25		
		1.3.1	Collective Behavior: Principal Problems of			
			Modeling and Analysis	25		
		1.3.2	Emergent Collective Behavior	28		
		1.3.3	Nonemergent and Controllable-Emergent			
			Collective Behavior	30		
		1.3.4	Artificial Self-Organization	32		
		1.3.5	Top-Down vs. Bottom-Up vs. Evolutionary vs.			
			Bioinspired	34		
	1.4	Adapt	tation and Self-Development	37		
		1.4.1	Invariant Goals, Self-Concept, and Unbound			
			Self-Development	39		

	1.5	Towards Self-*, Artificial Sociality, and Collective				
			onsciousness	42		
	1.6	Concl	usion	46		
		Part I	Fundamentals I. Middle-Size and Networked System	s		
2			n-Bot Experience: Strength and Mobility throug			
	-		ooperation	49		
			roß, Rehan O'Grady, Anders Lyhne Christensen,			
			Dorigo			
			duction	49		
			warm-Bot System	52		
	2.3		ssembly in the Swarm-Bot System	55		
			Methods	55		
			Results	57		
			Summary	58		
	2.4		ional Swarm-Bots—Part I: Enhancing Strengt			
			Methods	60		
			Results	63		
			Summary	66		
	2.5		ional Swarm-Bots—Part II: Enhancing Mobili			
			Methods	67		
			Results	70		
			Summary	74		
	2.6	Discu	ssion	74		
3	Arch	nitectur	res and Control of Networked Robotic Systems	81		
	Niko	laus Co	orrell and Daniela Rus			
	3.1	Intro	duction	82		
	3.2	Archi	tecture: Communication and Localization	85		
		3.2.1	Communication	85		
			3.2.1.1 Radio	87		
			3.2.1.2 Communication using light	88		
			3.2.1.3 Communication using sound	89		
		3.2.2	_	89		
			3.2.2.1 Localization using sound	90		
			3.2.2.2 Localization using infrared	91		
			3.2.2.3 Localization using radio	91		

	3.3	Mode	ling and	Control of Networked Robot Systems	92
		3.3.1	Modeli	ng and Control of Reactive Systems	95
		3.3.2	Modeli	ng and Control of Hybrid Systems	98
		3.3.3	Modeli	ng and Control of Deliberative Systems	101
	3.4	Challe	enges in	Networked Robotic Systems	102
4	Coo	perativ	e Roboti	cs in Robocup Soccer is Not Just	
	Play	ing a G	ame		105
	And	rea Bor	narini		
	4.1	Intro	duction		106
	4.2	Roboo	cup Leag	ues	107
		4.2.1	Middle	-Size League	108
		4.2.2	Small S	ize League	112
		4.2.3	Other L	eagues	114
	4.3		erative S		115
				ative Sensing Applications	118
	4.4	Coope	erative B	ehavior	119
		4.4.1	Central	ized Control	120
		4.4.2	Explicit	, Distributed Cooperation	120
		4.4.3	Implici	t Cooperation	122
		4.4.4	Cooper	ative Behavior Applications	123
	4.5	Сооре	erative S	trategy	124
		4.5.1	Cooper	ative Strategy Applications	125
	4.6	Concl	usion		126
5	Evo	ving Co	ollective	Control, Cooperation, and Distributed	
	-	nition			127
				fano Nolfi	
	5.1		duction		127
	5.2	Evolu	tionary l	Methods in Collective Robotics	129
		5.2.1	The ER	Approach	130
			5.2.1.1	Genotype-phenotype mapping and	
				robot configuration	132
			5.2.1.2	· · · · · · · · · · · · · · · · · · ·	
				fitness function	134
			5.2.1.3	Ecological selective pressures: the	
				environment configuration	137
		5.2.2	An Evo	lutionary Approach to Self-Organizing	
			Behavi	ors	138

	5.3	Studies on Self-Organizing Behaviors						
		5.3.1	Synchro	onization	141			
		5.3.2	Coordin	nated Motion and Emergent Decisions	148			
		5.3.3	Adaptat	tion of Communication, Coordination,				
			and Cat	egorization	156			
	5.4	Concl	usions		162			
c	Dali		and Fault	Televence in Collective Debet Systems	167			
6		-		Tolerance in Collective Robot Systems	101			
	6.1	Lynne E. Parker 6.1 Introduction						
			round		167 169			
				liability and Faulty Systems	170			
				eliability and Faulty Systems	170			
	6.4			iability and Fault Tolerance	173			
			-	tive Analysis				
		6.4.2	•	ative Metrics	176			
			6.4.2.1		177			
		0		Effectiveness metrics	178			
	6.5			anisms for Fault Detection, Diagnosis,				
			ecovery		184			
		6.5.1	Fault De		185			
				Individual robot fault detection	185			
			6.5.1.2	8	187			
			6.5.1.3					
				collectives	187			
		6.5.2		agnosis and Identification	188			
			6.5.2.1	Individual robot fault diagnosis and				
				identification	188			
			6.5.2.2	Causal models in robot collectives	189			
		6.5.3	Fault Re	ecovery	190			
	6.6	Case S	Studies		191			
		6.6.1	ALLIAN	CE: Dealing with Faults through Robot				
			Modelir	ıg	192			
		6.6.2	From Fi	reflies to Fault-Tolerant Swarms	195			
		6.6.3	SAFDet	ection: Sensor-Based Modeling for Fault				
			and And	omaly Detection	196			
		6.6.4	LeaF: A	daptive Causal Models for Fault				
			Diagnos	sis	200			
	6.7	Open	Challeng	jes	203			

7	Collective Reconfigurable Systems: Fundamentals of						
	Self-	Reconf	figuratior	n Planning	205		
	Feili Hou and Wei-Min Shen						
	7.1	Overv	view of M	lodular Robots	206		
	7.2	Litera	ture Ove	erview of Reconfiguration Algorithms	208		
		7.2.1	Lattice-	Type Reconfiguration	208		
		7.2.2	Chain-T	'ype Reconfiguration	210		
	7.3	Collec	tive Cha	in-Type Reconfiguration-Planning			
		Probl	em		211		
	7.4	Morp	hLine Pla	anner	214		
		7.4.1	Distrib	uted Configuration Comparison	215		
			7.4.1.1	Goal configuration representation	215		
			7.4.1.2	Current configuration recognition	217		
			7.4.1.3	Configuration comparison	218		
		7.4.2	Reconfi	guration between Different			
			Substru	ictures	220		
			7.4.2.1	Reconfiguration from a subtree to a			
				line	221		
			7.4.2.2	Reconfiguration from a line to a			
				subtree	223		
			7.4.2.3	Reconfiguration from one line to			
				another line	224		
		7.4.3	Discuss	ion	225		
	7.5 Conclusion						

PART II FUNDAMENTALS II. LARGE-SCALE AND SWARM SYSTEMS

8	8 Self-Organized Robotic Systems: Large-Scale Experiments in					
	Agg	egation and Self-Asse	mbly Using Miniature Robots	231		
	Grég	ory Mermoud, Amand	a Prorok, Loïc Matthey,			
	Chri	stopher Cianci, Nikolau	s Correll, and Alcherio Martinoli			
	8.1 Introduction					
		8.1.1 Self-Organizat	ion	233		
	8.2	From Centralized to	Distributed Control: The Case			
		Study of a Distribute	d Table Lamp	236		
		8.2.1 The Configura	tion Problem	237		
		8.2.2 System and Al	gorithms	238		
		8.2.3 Down to Reali	ty	240		

	8.3	Self-0	rganized Strategies for Distributed Control	242		
		8.3.1	Clustering of Objects	242		
		8.3.2	Collaborative Decision Making in the Presence			
			of Noise	246		
	8.4	Mode	ling Self-Organized Distributed Robotic			
		Syster	ns	250		
		8.4.1	Submicroscopic Models	252		
		8.4.2	Microscopic Models	252		
		8.4.3	Macroscopic Models	255		
	8.5	Concl	usion	259		
9	Bion	nimetio	and Bioinspired Design of Collective Systems	261		
	Thor	mas Sch	nmickl, Karl Crailsheim, Jean-Louis Deneubourg,			
	and	José Ha	alloy			
	9.1	Collec	tive Behavior and Decision Making in Natural			
		and R	obotic Systems	261		
	9.2	Aggre	gation Behavior in Animal Societies	262		
	9.3	Modeling Collective Behavior and Decision Making in				
		Natur	al and Robotic Systems	266		
	9.4	Case S	Study 1: Cockroach Aggregation	268		
		9.4.1	Aggregation and Decision Making Based on			
			Modulation of Resting Time	268		
		9.4.2	Mean Field Model for Self-Organized			
			Aggregation	268		
		9.4.3	Stochastic Formulation of the Model	270		
		9.4.4	Main Ingredients of the Model Forming a			
			Requirements List for Designing Robots	271		
		9.4.5	One Population in the Presence of Two Sites	272		
		9.4.6	Selection of Places and Optimal Group Size and			
			Place Distribution	275		
	9.5	Case S	Study 2: Honeybee Aggregation	282		
		9.5.1	Biological Experimentation of Honeybee			
			Aggregation Behavior	283		
		9.5.2	Agent Model	287		
		9.5.3	First Robotic Model	289		
		9.5.4	Mathematical Model of a Robotic Swarm	291		
		9.5.5	Scaling the Number of Swarm Members	294		
		9.5.6	Scaling the Number of Swarms	295		

		9.5.7 Int	roducing an Additional Social Component	298				
		9.5.8 Bio	omimicry	301				
		9.5.9 Wl	here to Go from Here?	301				
	9.6	Conclusio	on and Outlook	304				
10	Imp	roving the	e Scalability of Collective Systems	309				
		e Kernbad						
	10.1	Overvi	ew of Scalability in the Literature	311				
			of Performance Measurements and					
		-	lity Parameters	312				
		10.2.1	Scalability Metrics and Scalability Types	315				
	10.3		ctivity, Communication, and the Degree of					
		Collect	ive Awareness	317				
	10.4	Kinetic	and Interactions Transfer Metrics	321				
		10.4.1	Invariance to Scalability Parameters:					
			Test Case I	326				
	10.5	Cooper	ration and Collective Information Metrics	329				
	10.6	Energy	Metrics and Energy Homeostasis	334				
	10.7	Structu	ral and Self-Assembling Issues	338				
	10.8	B Improv	ving Scalability by Active Compensation of					
		Change	Changes					
		10.8.1	10.8.1 Absorbing Mechanisms: Test Case II					
	10.9	Conclu	Concluding Discussion: Design for					
		Scalabi	Scalability—Collective Simplicity or Individual					
		Comple	Complexity?					
11	Coll	ective For	aging: Cleaning, Energy Harvesting, and					
	Trop	hallaxis		353				
	Alar	F. T. Winj	field, Serge Kernbach, and Thomas Schmickl					
	11.1	Introdu	uction	353				
	11.2	An Abs	tract Model of Collective Foraging	355				
	11.3	Strateg	ies for Cooperation in Collective					
		Foragii	ng	358				
		11.3.1	Information Sharing	358				
		11.3.2	Physical Cooperation	359				
		11.3.3	Division of Labor	361				
		11.3.4	Mathematical Modeling of Collective					
			Foraging	363				

	11.4	Case Study 1: Collective Foraging for Energy				
	11.5	Case Study 2: From Information-Sharing				
		Tropha	llaxis to Energy-Sharing Trophallaxis	369		
		11.5.1	The Swarm Robotic Task: A Collective			
			Cleaning Scenario	374		
		11.5.2	Deriving the Trophallaxis-Inspired			
			Algorithm from Bioinspiration	376		
		11.5.3	Collective Perception within a Robot			
			Swarm	378		
		11.5.4	Preventing Obstacles and Shortest-Path			
			Decisions	382		
		11.5.5	Quantitative Analysis of Swarm			
			Behaviors	383		
		11.5.6	Individual Adaptation Enhancing the			
			Swarm's Abilities	384		
		11.5.7	Dynamic, Complex, and Emergent Maps of			
			the Environment	388		
		11.5.8	From "Information Trophallaxis" to			
			"Energy Trophallaxis"	391		
		11.5.9	Future Work and Elaboration of the			
			Trophallaxis-Inspired Algorithm	393		
	11.6	Case St	udy 3: A Kinetic Model of Swarm Foraging	394		
		11.6.1	Global Energy Homeostasis for a Constant			
			Swarm Density	396		
		11.6.2	Collective Strategies for a Variable Swarm			
			Density	398		
		11.6.3	Requirements for a Good Swarm Foraging			
			Strategy	400		
		11.6.4	Experiments	401		
		11.6.5	Concluding Remarks on the Kinetic			
			Foraging Model	409		
	11.7	Conclu	sion	410		
12	Indivi	dual, So	cial, and Evolutionary Adaptation in			
	Collective Systems					
	Evert	Haasdijk	ς, Α. Ε. Eiben, and Alan F. T. Winfield			
	12.1	Introdu		413		
	12.2	-	tion-Based Adaptive Systems	417		
		12.2.1	Three Tiers of Adaptation	418		

	12.2.2	The Envi	ronment and the Agents	420
			Decision making and agent	
			controllers	421
	12.2.3	Adaptati	on Mechanisms	423
		-	Evolution	423
		12.2.3.2	Individual learning	425
			Social learning	426
	12.2.4		ships between Adaptation	
		Mechani	sms	428
		12.2.4.1	Evolutionary and lifetime	
			learning	428
		12.2.4.2	Individual and social learning	429
		12.2.4.3	Individual and social learning as	
			evolution	430
	12.2.5	Discussio	on	432
12.3	Learnii	ng Benefit	s Evolution	434
	12.3.1	The Expe	eriments	435
		12.3.1.1	Measurements	437
	12.3.2	Experim	ent I	437
		12.3.2.1	Evolution-only and evolution-	
			reinforcement learning	
			combination with energy-based	
			rewards	437
		12.3.2.2	Combination of evolution and	
			reinforcement learning with a	
			hardwired reward	439
	12.3.3	Experim	ent II	440
	12.3.4	Discussio	on	441
12.4	Social I	Learning a	is an Enabler of a Knowledge	
	Reserv	oir		443
			nd Agent Quality	444
			arning in Detail	445
		-	ental Setup	448
	12.4.4	Results		450
		Discussio		452
12.5			ion and Memetic Evolution	453
			ed Imitation	454
	12.5.2		ficial Culture Project	456
		12.5.2.1	The artificial culture laboratory	457

		12.5.3	Robot-R	obot Imitation of Movement	460
		12.5.4	Experim	ental Results	462
			12.5.4.1	A quality of imitation metric	462
				Robot-robot imitation with	
				variation	463
			12.5.4.3	Open-ended memetic	
				evolution	464
		12.5.5	Discussio	on and Further Work	468
	12.6	Conclu	sion		469
13	Repli	cators: F	rom Mole	cules to Organisms	473
	lstvár	n Zachar,	Ádám Kur	n, Chrisantha Fernando,	
	and E	örs Szatl	hmáry		
	13.1	Replica	ators are A	utocatalysts	474
	13.2	Autoca	talysis is r	not Enough for Evolution	476
	13.3	Genes a	and DNA		479
	13.4	Enzym	es and RN	A	482
	13.5	Molecu	ılar Replic	ators	486
	13.6	Catalyt	ic Networ	ks and Metabolism	489
	13.7	Encaps	ulated Me	tabolism and Templates:	
		The Ch	emoton		491
	13.8	Replica	ation as Pa	rt of a Whole	492
	13.9	Prions:	Real Evol	utionary Replicators?	494
	13.10) Neuror	nal Replica	itors	497
		Outloo			500
			ΡΑ	RT III CHALLENGES	
14		-		ve Robotics: Advantages and	
		-		ed Self-Development	505
		Kernbad			
		Introdu			505
	14.2	-		Self-Adaptation; Development and	
			evelopmen		507
	14.3		-	lasticity of Collective Systems	514
		14.3.1	-	nental Plasticity of Biochemical	
				hatronic Systems	519
		14.3.2		ability of Long-Term	
			Self-Deve	elopmental Processes	521

	14.4	Top-Down, Bottom-Up, Evolutionary, and					
		Bioinsp	pired Generators	522			
		14.4.1	Bottom-Up Generators	523			
		14.4.2	Top-Down Generators	524			
		14.4.3	Evolutionary and Bioinspired Generators	526			
	14.5	Functio	onal Generators in Robot Swarms	529			
	14.6	Develo	pmental Plasticity through Structural				
		Reconfi	iguration	536			
		14.6.1	Structural Self-Development of Collective				
			Locomotion	538			
		14.6.2	Self-Developmental Capabilities of				
			Artificial Organisms	542			
	14.7	Conclu	sion	545			
15	A Ger	eral Me	thodology for the Control of Mixed				
	Natur	al-Artific	cial Societies	547			
	Franc	esco Mo	ndada, José Halloy, Alcherio Martinoli,				
	Nikola	aus Corre	ll, Alexey Gribovskiy, Grégory Sempo,				
	Rolan	Roland Siegwart, and Jean-Louis Deneubourg					
	15.1	Introdu	iction	547			
		15.1.1	Motivation	549			
		15.1.2	State of the Art	550			
	15.2	The Co	ncept of a Mixed Society	551			
	15.3	Method	lology Overview	554			
	15.4	The For	rmal Society Model: Analytical Models and				
		Simula	tions	556			
		15.4.1	Advantages of Mathematical Formalization	557			
		15.4.2	Multi-level Modeling	558			
		15.4.3	Relation and Synergy between the Levels of				
			Description	562			
	15.5	Behavi	oral Animal Studies	562			
		15.5.1	Experimental Tests	564			
			15.5.1.1 Monitoring tools	566			
		15.5.2	Identification and Quantification of				
			Relevant Behavior Communication Signals	567			
		15.5.3	Formalization of the Biological Behavioral				
			Model	567			
		15.5.4	Lessons Learned from Leurre	569			

	15.6	Robot Design				
		15.6.1	Specifications of Relevant Communication			
			Channels, Behaviors, and Bodies	573		
		15.6.2	Robot Design and Implementation	574		
		15.6.3	Robot Design in the Leurre Project	574		
	15.7			576		
		15.7.1	Model-Based Predictions	578		
		15.7.2	Parameters Modulation	580		
	15.8 Discussion		sion	581		
	15.9	Conclusion and Outlook		585		
16			Robot Swarms: Challenges and Opportunities	587		
	Navinda Kottege, Felix Schill, Alexander Bahr,					
		and Uwe R. Zimmer				
			Multirobot Swarms			
		Distributed Sensing				
	16.3	3 Underwater Localization and Navigation				
			Cooperative Localization and Navigation	593		
			Coordination of Underwater Gliders	596		
		16.3.3	Relative Localization Sensors	596		
	16.4		e Communication in Underwater Swarms	597		
			Requirements for Network Scalability	601		
			Network Channel Access for Swarms	603		
	16.5	State of	f the Art and Future Directions	607		
17		Aerial Collective Systems				
	Jean-Christophe Zufferey, Sabine Hauert, Timothy Stirling,					
	Severin Leven, James Roberts, and Dario Floreano 17.1 Introduction					
		Introduction				
	17.2	Flying		611		
			Platforms	611		
			Flight Stabilization	616		
			Localization and Navigation	620		
			Collision Avoidance	624		
			Power Management and Energy	627		
	17.3	8		630		
			Communication	630		
		17.3.2	Relative Positioning	636		

	17.4	Collective Behaviors			645
		17.4.1	Explorat	ion	645
		17.4.2	Flocking		651
		17.4.3	Approac	hes to Controller Design	655
	17.5	Conclus	sion		658
18	Colle	ctive Syst	ems in Sp	ace and for Planetary Explorations	661
	Dario Izzo, Christos Ampatzis, and Tobias Seidl				
	18.1	Collective Systems in Space			661
	18.2	Challenges			665
	18.3	Three Selected Projects from the Advanced			
		Concepts Team			668
		18.3.1	Behavior	r-Based Methods for Formation	
			Control		668
		18.3.2	Evolution	nary Robotics-Based Controllers	674
		18.3.3	A Deploy	ment Problem Solved by Plant	
			Roots		683
			18.3.3.1	The biological model	684
			18.3.3.2	The technological transfer	689
			18.3.3.3	A representative space	
				application	691
			18.3.3.4	Concluding remarks	691
	18.4	General	l Summar	у	693
19	Nanorobotics: A Perspective				695
	Aristi		Requicha		
	19.1				695
	19.2	6			698
	19.3	8			701
	19.4 Programming and Coordination of Nanorobot				
		Swarms	5		703
	19.5	Summa	ry		706
20	Minimalistic Large-Scale Microrobotic Systems				
	Oliver Scholz, Angel Dieguez, and Paolo Corradi				
	20.1				707
	20.2			efinition and Motivation	709
		20.2.1	Definitio		709
		20.2.2	Motivatio	on	710

	20.3	State-of-the-Art in Microrobotics 7		
	20.4	Swarm Robotics—Definition and State of the Art		
	20.5	.5 Enabling Technology I: Communication Technologies for mm-Sized Swarm Robots		
	20.6	Enabliı	abling Technology II: Onboard Control and	
		Proces	sing	723
	20.7	Enabling Technology III: Energy Supply of		
		Microrobots		727
	20.8	The I-Swarm Microrobot Platform		728
		20.8.1	Solar Cell	731
		20.8.2	Communication Module	731
		20.8.3	Locomotion and Vibration Contact	
			Sensor	733
		20.8.4	Locomotion Unit	734
		20.8.5	ASIC	736
		20.8.6	Performance of the Final I-Swarm Robot	
			Platform	738
	20.9 Fabrication Aspects			740
	20.10 Conclusion			742
21			rm Robots	745
21	Peter	Grančič	and František Štěpánek	
21	Peter		and František Štěpánek	745
21	<i>Peter</i> 21.1	Grančič Introdu Method	<i>and František Štěpánek</i> action dology	745 750
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1	and František Štěpánek action dology Motion of Chemical Swarm Robots	745 750 750
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1 21.2.2	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals	745 750 750 752
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1 21.2.2 21.2.3	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media	745 750 750
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1 21.2.2	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media	745 750 750 752
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions	745 750 750 752 753 753
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions,	745 750 750 752 753
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4 21.2.5	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions	745 750 750 752 753 753
21	<i>Peter</i> 21.1	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4 21.2.5 21.2.6	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions Parameter Setup	745 750 750 752 753 753 755
21	Peter 21.1 21.2	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4 21.2.5 21.2.6 Results	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions Parameter Setup Parametric Study	745 750 750 752 753 753 755 757
21	Peter 21.1 21.2	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4 21.2.5 21.2.6 Results	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions Parameter Setup Parametric Study s and Discussion Mean Square Displacement	745 750 752 753 753 755 757 759
21	Peter 21.1 21.2	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4 21.2.5 21.2.6 Results 21.3.1	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions Parameter Setup Parametric Study and Discussion Mean Square Displacement Target Localization Time and Success Rate	745 750 750 752 753 753 755 757 759 759
21	Peter 21.1 21.2	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4 21.2.5 21.2.6 Results 21.3.1 21.3.2 21.3.3	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions Parameter Setup Parametric Study and Discussion Mean Square Displacement Target Localization Time and Success Rate	745 750 750 752 753 753 755 757 759 759 759 761
21	Peter 21.1 21.2 21.3	Grančič Introdu Method 21.2.1 21.2.2 21.2.3 21.2.4 21.2.5 21.2.6 Results 21.3.1 21.3.2 21.3.3 21.3.4	and František Štěpánek action dology Motion of Chemical Swarm Robots Diffusion of Chemical Signals Random Porous Media Spatial Discretization, Initial Conditions, and Boundary Conditions Parameter Setup Parametric Study and Discussion Mean Square Displacement Target Localization Time and Success Rate Optimum Signaling Threshold	745 750 750 752 753 755 755 755 757 759 759 761 763

22	Performing Collective Tasks with Flagellated Bacteria Acting as Natural and Hybrid Microrobots Sylvain Martel			773
				775
		Artificial Microrobots		774
		22.1.1 Technological Limitations in the		,,,,
		221111	Development of Artificial Microrobots	774
		22.1.2	Typical Conception of Future Intelligent,	
			Self-Propelled Microrobots	777
	22.2	-		779
		22.2.1	The MC-1 Natural Microrobot	779
		22.2.2	Propulsion System	780
		22.2.3	Directional Control in a Free Space	783
		22.2.4	Directional Control in a Constrained	
			Space	785
		22.2.5	Transmitter for Localization	788
		22.2.6	Embedded Sensors	790
	22.3	Hybrid Microrobots		792
		22.3.1	Grasping, Anchoring, Detection,	
			Diagnostics, and Destruction	793
	22.4	Microassembly		794
	22.5	Conclusion		797
Bib	liogra	phy		799
Ind	ex			915

Preface

Collective robotics may be considered an interdisciplinary effort, which deals with technological, scientific, and social problems in artificial and mixed societies consisting of many interacting entities. Handbook of Collective Robotics: Fundamentals and Challenges is devoted to mechatronic, chemical, biological, and hybrid systems utilizing cooperative, networked, swarm, self-organizing, evolutionary, biomimetic, and bioinspired design principles and addressing underwater, ground, air, and space applications. In selecting the topics for this book, special attention was paid to covering current and future key technologies and involving leading research groups from the corresponding technological areas. This book is aimed at anyone who is interested in learning more about collective robotics, whether coming from research, education, business, or anywhere else. Its purpose is to help people learn what modern collective robotics is, what it may develop into, and what impact it might have on our society.

The idea of creating a book that would address the entire field of collective robotics was born within several large European projects and communicated to the community during conferences, such as ICRA, IROS, DARS, and ANTS. The preparation essentially arose from the workshops *Collective Adaptive Systems* and *Collective Robotics* organized by the *Future and Emerging Technology* and *Cognitive Systems and Robotics* units in the European Commission. Multiple discussions with Prof. Paul Levi, Prof. Hermann Haken, Prof. Alan Winfield, Dr. Thomas Schmickl, Dr. José Halloy, Prof. Gusz Eiben, Prof. Wei-Min Shen, Prof. Dario Floreano, Prof. Rolf Pfeifer, Prof. Steen Rasmussen, Prof. Jean-Louis Deneubourg, Prof. Karl Crailsheim, Prof. Heinz Wörn, and Prof. Kasper Stoy radically influenced the final selection of topics. Stanford Chong, director of Pan Stanford

Publishing, suggested extending the content to *Fundamentals* and *Challenges* and transforming it into a handbook. The book in its current form includes 22 chapters, divided thematically into *Middle-Sized and Networked Systems, Large-Scale and Swarm Systems*, and *Challenges*. Its creation involves 52 co-authors from 14 countries and describes more than 40 research projects and 70 robot platforms. Its 75 pages of references can be thought of as one of the most comprehensive overviews of the whole field of collective robotics. The chapters have received comments from 36 reviewers, and the whole effort took more than two years.

The editor prepared this volume in the conviction that future collective robotics will involve different synthetic systems; the selection of chapters reflects this vision.

The first chapter discusses a taxonomy for collective robotics and briefly introduces the content of other chapters. Chapters 13 and 21 are devoted to biochemical, Chapter 15 to biohybrid, Chapters 19 and 20 to micro- and nano-, and Chapter 22 to bacterial systems. Classical mechatronic technologies are represented by swarm (Chapter 2), networked (Chapter 3), reconfigurable (Chapter 7), and self-assembling (Chapters 8 and 14) systems. The chapters target different applications in service (Chapter 4), underwater (Chapter 16), aerial (Chapter 17), and space (Chapter 18) areas. Example of cooperating industrial robots should have been represented by the KUKA Robotics RoboTeam; unfortunately economic conditions made further preparation of this chapter impossible. I would like to thank Ken Stoddard and all those who were involved in the preparation of that work. The methodological part of the book covers self-organizing (Chapters 2 and 8), evolutionary (Chapters 5 and 12), biomimetic/bioinspired (Chapter 9), and developmental (Chapter 14) strategies and involves aspects such as reliability and fault tolerance (Chapter 5), scalability (Chapter 10), energy foraging (Chapter 11), self-replication (Chapter 13), and adaptivity (Chapters 12 and 14). Finally, diverse social aspects of collective robotics are treated in Chapters 9, 12, and 15.

I would like to thank all the co-authors who contributed to this book, the reviewers whose comments improved all the chapters, our research group, especially Prof. Paul Levi for his open and constant encouragement, and finally all those people who helped either with computer infrastructure or with the technical preparation of this book. I would also like to thank my family for the support I received while preparing this book.

> Serge Kernbach Stuttgart