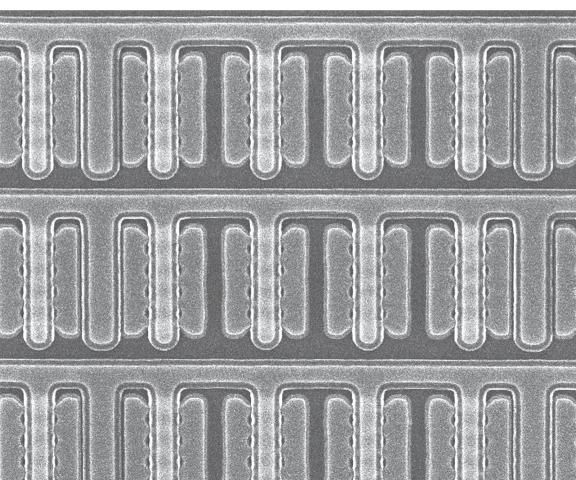
Nonrogen for the second second

INNOVATIVE DEVICES,


ARCHITECTURES,

AND APPLICATIONS

edited by Nadine Collaert

<u>CMOS</u> Nanoelectronics

INNOVATIVE DEVICES,

ARCHITECTURES,

AND APPLICATIONS

edited by Nadine Collaert

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

CMOS Nanoelectronics: Innovative Devices, Architectures, and Applications

Copyright © 2013 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4364-02-7 (Hardcover) ISBN 978-981-4364-03-4 (eBook)

Printed in the USA

Contents

Pr	eface		xv
		I. Integration of Multi-Gate Devices (FinFET)	
1	Intr	oduction to Multi-Gate Devices and Integration	
	Cha	llenges	3
	Nad	line Collaert	
	1.1	Introduction	3
	1.2	It Is All in the Lambda	5
		1.2.1 Where do These Short-Channel Effects Come	
		From?	6
	1.3	SOI MuGFET Versus Bulk MuGFET	9
	1.4	A Typical MuGFET Process Flow	11
		1.4.1 Challenges	12
		1.4.1.1 Fin width patterning	12
		1.4.1.2 Work function engineering	15
		1.4.1.3 Access resistance	17
		1.4.1.4 Strain engineering	19
	1.5	From MuGFET to Nanowires	21
	1.6	Conclusions	22
2	Dry	Etching Patterning Requirements for Multi-Gate	
	-	ices	29
	Efra	ín Altamirano-Sánchez, Tom Vandeweyer,	
		Werner Boullart	
	2.1	Introduction	29
	2.2	Fin Patterning Strategy	32
		2.2.1 Patterning Stack	33
	2.3	Fin Patterning: Dry Etching Process Development	35

		2.3.1	Process	for Fin Patterning on a Multi-Gate	
				cture (193 nm Lithography)	35
		2.3.2		for Fin Patterning with a 90 nm Fin	
			Pitch fo	r a 22 nm Node 6T-SRAM Cell (193i)	38
			2.3.2.1	Fin critical dimension control	41
			2.3.2.2	Control of the sidewall roughness	42
			2.3.2.3	Fin profile optimization	46
		2.3.3	Process	for Fin Patterning for a Sub-22 nm and	
			16 nm l	Node 6T-SRAM Cell (EUVL)	50
3	Hig	h- <i>k</i> Die	electrics	and Metal Gate Electrodes on SOI	
	Mu	GFETs			57
	Isab	elle Fei	rain		
	3.1	Gate I	Electrode	es in MuGFETs	58
		3.1.1		equirements	58
		3.1.2	Metal G	ates for MuGFETs	60
				MOCVD TiN	62
				ALD TIN	64
				PE-ALD TiN	65
		3.1.3		ack Processing	66
				Pattern transfer	66
				Polysilicon patterning	66
				Hard mask removal	68
				Metal Gate patterning	69
		3.1.4	-	con Corrosion	69
			3.1.4.1		
				factors	70
			3.1.4.2	1 5	71
	~ ~		3.1.4.3		72
	3.2		-	nplementation	74
			Introdu		74
		3.2.2		l Modification	77
				Experimental conditions	77
				V_T and W_{fin} dependence	78
				Device performance	78
				Advantages	80
		.		Limitations	81
		3.2.3	metal/(Dxide Interface Modification	81

		3.2.3.1	Interface dipole model: introduction	81
		3.2.3.2	Implantation-based interface	
			modification	82
		3.2.3.3	Gate dielectric nitridation	86
		3.2.3.4	Dielectric capping layers	91
	3.2.4	Metal G	ate Modification	105
		3.2.4.1	Metal-inserted capping layers	105
		3.2.4.2	Metal thickness-induced V _{fb}	
			shift	110
3.3	Flat B	and Volt	age Extraction in SOI MuGFETs	117
	3.3.1	Work F	unction Assessment on MOS Structures	118
		3.3.1.1	Internal photoemission method	118
		3.3.1.2	Flat-band voltage vs. EOT	
			method	119
		3.3.1.3	Fowler–Nordheim transition-based	
			method	122
		3.3.1.4	Band alignment measurement	123
	3.3.2	EVB Tu	nneling and Band Alignment (nFETs)	124
		3.3.2.1	EVB tunneling-based metric:	
			definition	124
		3.3.2.2	Metric independence on EOT	127
		3.3.2.3	Application to n-MOSFETs	127
		3.3.2.4	Extension to p-MOSFETs	128
		3.3.2.5	-	130
	3.3.3	Gate Le	akage Derivative-Based Method	130
		3.3.3.1	-	130
		3.3.3.2	Comparison with the EVB	
			tunneling-defined method	131
	3.3.4	The Ful	ly Depleted Floating Body MuGFET	
		Case		133
		3.3.4.1	Framework and constraints	133
		3.3.4.2	Flat band voltage extraction	134
		3.3.4.3	Limitations	136
D -	ine C	mta -t	nd Stuain Anabita at	
-	led Fin		nd Strain Architectures for Highly	149
	ert Lan			149
		<i>aer</i> luction		149
4.1	INTO	iucuon		149

4

	4.1.1	Scaling Issues for Planar CMOS Junctions	150
	4.1.2	The FinFET Architecture	152
	4.1.3	Performance-Leakage Trade-Offs for Fully	
		Depleted FinFETs	153
4.2	FinFE	T Device Process Sequence	157
4.3	Exten	sion and Halo Formation	158
	4.3.1	Pitch Constraints and Conformal Doping for	
		Extensions	159
	4.3.2	Dopant Incorporation by Ion Implantation	161
	4.3.3	Alternatives to Ion Implantation	162
		4.3.3.1 Plasma doping	162
		4.3.3.2 Vapor phase doping	162
		4.3.3.3 Epi tip	163
	4.3.4	Dopant Retention	163
	4.3.5	Dopant Activation	164
4.4	Space	r Formation	168
4.5	Select	tive Epitaxial Growth, HDD and Salicidation	170
	4.5.1	Self-Aligned Silicidation	170
	4.5.2	The Doping-Less Transistor?	173
	4.5.3	Selective Epitaxial Growth	173
	4.5.4	Highly Doped Drain Formation	176
4.6	Chanı	nel Strain	176

II. Circuit-Related Aspects

5	Var	iability	y and Its Implications for FinFET SRAM	185		
	Emanuele Baravelli, Luca De Marchi, and Nicolò Speciale					
	5.1	Introd	luction	186		
	5.2	Mode	ling Variation Sources at the Physical Level	190		
		5.2.1	LER Metrology	191		
		5.2.2	TCAD Representation of LER	193		
	5.3	Impac	ct of Variability at the Device Level	194		
		5.3.1	Simulation Approach	194		
		5.3.2	Assessment of LER Contributions to Electrical			
			Fluctuations	197		
		5.3.3	Correlation Analysis and Comparison of LER			
			Simulation Approaches	200		
			5.3.3.1 Correlation study	200		

			5.3.3.2	Exploiting correlations	204
		5.3.4	Impact	of FinFET Design on LER-Induced	
			Variabil	ity	206
			5.3.4.1	Number of fins, crystal orientation	
				and WF engineering	207
			5.3.4.2	Doping profiles and role of the	
				extensions	208
	5.4	Impac	t of Varia	ability at the Circuit Level	214
		5.4.1	Simulat	ion Approach and SRAM Stability	
			Metrics		215
				Based SRAM Design	217
		5.4.3	Hold, R	ead and Write Operating	
			Conditi		219
				tability vs. Cell Sizing	220
				tability vs. Crystal Orientation	222
				tability vs. Gate Stack	223
	5.5	Conclu	usions		225
6	Spe	cific Fe	atures	of MuGFETs at High Temperatures	
	-			ency Range	233
	Vale	riya Kil	chytska,	Jean-Pierre Raskin,	
	and	Denis F	Flandre		
	6.1	Introd	uction		233
	6.2	Device	es, Measi	urements and Simulation Details	234
	6.3	Thres	hold Volt	tage	236
			reshold S	-	240
				ent Ratio, I_{on}/I_{off}	246
	6.6	Analog		Applications	248
		6.6.1	Maximu	Im Transconductance-to-Drain Current	
				$I_m/I_{d max}$	248
				Early Voltage and Intrinsic Gain	249
				onductance Maximum, <i>G</i> _{m max}	252
			f_T, f_{max}		256
	6.7	Conclu	usions		256
7				FinFET Technology	261
		en Thij			
		Introd			261
	7.2	Brief I	ntroduc	tion to ESD	262

			Basic ESD Protection Devices	264		
		7.2.2				
			Measurements			
			alization Methodology			
	7.4		etrical Dependencies			
		7.4.1	r i i i i i i i i i i i i i i i i i i i	269		
			7.4.1.1 Gate length dependence	271		
			7.4.1.2 Fin width dependence	277		
			7.4.1.3 Number of fins dependence	282		
		7.4.2	Gated Diodes	285		
			7.4.2.1 Gate length dependence	286		
			7.4.2.2 Fin width dependence	287		
	7.5	Proce	ss Technology Dependencies	288		
		7.5.1	Selective Epitaxial Growth	288		
		7.5.2	Silicide Blocking	292		
		7.5.3	Strain	294		
	7.6	Concl	usions	297		
	- 11	I. Exp	loratory Devices and Characterization Tools			
0		-	loratory Devices and Characterization Tools	202		
8	The	Juncti	ionless Nanowire Transistor	303		
8	The Bar	e Junct i t Sorée,	ionless Nanowire Transistor Anh-Tuan Pham, Dries Sels,	303		
8	The Bari and	e Junct i t Sorée, Wim N	ionless Nanowire Transistor , Anh-Tuan Pham, Dries Sels, Iagnus			
8	The Bari and 8.1	e Junct i t Sorée, Wim M Introd	ionless Nanowire Transistor , Anh-Tuan Pham, Dries Sels, Iagnus duction	303 304		
8	The Bari and 8.1	e Junct i t Sorée, Wim M Introd Basic	ionless Nanowire Transistor . <i>Anh-Tuan Pham, Dries Sels,</i> <i>Iagnus</i> duction Working Principles of the Junctionless	304		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Junct t Sorée, Wim M Introd Basic Nano	ionless Nanowire Transistor Anh-Tuan Pham, Dries Sels, Magnus duction Working Principles of the Junctionless wire Transistor	304 307		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Junct t Sorée, Wim M Introd Basic Nanov Analy	ionless Nanowire Transistor Anh-Tuan Pham, Dries Sels, Magnus duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires	304 307 310		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Junct t Sorée, Wim M Introo Basic Nanov Analy 8.3.1	ionless Nanowire Transistor Anh-Tuan Pham, Dries Sels, Magnus duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation	304 307		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Junct t Sorée, Wim M Introo Basic Nanov Analy 8.3.1	ionless Nanowire Transistor Anh-Tuan Pham, Dries Sels, Magnus duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current	304 307 310 310		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Junct t Sorée, Wim M Introo Basic Nanov Analy 8.3.1	ionless Nanowire Transistor Anh-Tuan Pham, Dries Sels, Magnus duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold	304 307 310 310 312		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Junct t Sorée, Wim M Introo Basic Nanov Analy 8.3.1	ionless Nanowire Transistor <i>Anh-Tuan Pham, Dries Sels,</i> <i>Magnus</i> duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold $8.3.2.1$ Flatband condition: $V_{\rm G} = 0$	304 307 310 310 312 312 314		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Junct t Sorée, Wim M Introo Basic Nanov Analy 8.3.1 8.3.2	ionless Nanowire Transistor <i>Anh-Tuan Pham, Dries Sels,</i> <i>Magnus</i> duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold 8.3.2.1 Flatband condition: $V_{\rm G} = 0$ 8.3.2.2 Depletion: $V_{\rm G} < 0$	304 307 310 310 312 314 315		
8	The <i>Bart</i> <i>and</i> 8.1 8.2	e Juncti t Sorée, Wim M Introo Basic Nanov Analy 8.3.1 8.3.2 8.3.3	ionless Nanowire Transistor <i>Anh-Tuan Pham, Dries Sels,</i> <i>Magnus</i> duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold 8.3.2.1 Flatband condition: $V_{\rm G} = 0$ 8.3.2.2 Depletion: $V_{\rm G} < 0$ Subthreshold Current	304 307 310 310 312 314 315 315		
8	The <i>Barra</i> <i>and</i> 8.1 8.2 8.3	e Juncti t Sorée, Wim M Introo Basic Nanov Analy 8.3.1 8.3.2 8.3.3 8.3.3	ionless Nanowire Transistor <i>Anh-Tuan Pham, Dries Sels,</i> <i>Magnus</i> duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold 8.3.2.1 Flatband condition: $V_G = 0$ 8.3.2.2 Depletion: $V_G < 0$ Subthreshold Current Discussion	304 307 310 310 312 314 315		
8	The <i>Barra</i> <i>and</i> 8.1 8.2 8.3	 Juncti Sorée, Wim M Introo Basic Nanov Analy 8.3.1 8.3.2 8.3.3 8.3.4 Low-I 	ionless Nanowire Transistor <i>Anh-Tuan Pham, Dries Sels,</i> <i>Magnus</i> duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold 8.3.2.1 Flatband condition: $V_{\rm G} = 0$ 8.3.2.2 Depletion: $V_{\rm G} < 0$ Subthreshold Current Discussion Field Mobility Modeling for Long Thin	304 307 310 310 312 314 315 315 316		
8	The <i>Barra</i> <i>and</i> 8.1 8.2 8.3	e Juncti t Sorée, Wim M Introd Basic Nanov Analy 8.3.1 8.3.2 8.3.3 8.3.4 Low-H Juncti	ionless Nanowire Transistor <i>Anh-Tuan Pham, Dries Sels,</i> <i>Magnus</i> duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold 8.3.2.1 Flatband condition: $V_{\rm G} = 0$ 8.3.2.2 Depletion: $V_{\rm G} < 0$ Subthreshold Current Discussion Field Mobility Modeling for Long Thin tonless Nanowires	304 307 310 310 312 314 315 315		
8	The <i>Barra</i> <i>and</i> 8.1 8.2 8.3	 Juncti Sorée, Wim M Introo Basic Nanov Analy 8.3.1 8.3.2 8.3.3 8.3.4 Low-I 	ionless Nanowire Transistor <i>Anh-Tuan Pham, Dries Sels,</i> <i>Magnus</i> duction Working Principles of the Junctionless wire Transistor tical Model for Long and Thick Nanowires The Abrupt Depletion Approximation The Gradual Channel Approximation: Current Above Threshold 8.3.2.1 Flatband condition: $V_{\rm G} = 0$ 8.3.2.2 Depletion: $V_{\rm G} < 0$ Subthreshold Current Discussion Field Mobility Modeling for Long Thin	304 307 310 310 312 314 315 315 316		

			8.4.1.1 Flatband condition	320
			8.4.1.2 Full depletion or pinch-off condition	322
		8.4.2	Low Field Mobility and Scattering Mechanisms	323
	8.5	Ballis	tic Transport in Ultrashort Thin Junctionless	
		Nanov	wires	325
		8.5.1	Schrödinger-Poisson Problem	325
		8.5.2	Equivalence of the Junctionless (Pinch-Off)	
			and Inversion Mode MOSFET Nanowire	327
	8.6	Advar	nced Transport Modelling of the Junctionless	
		Nanov	wire Transistor	330
		8.6.1	The Poisson–Schrödinger Problem	330
		8.6.2	The Boltzmann Transport Equation	332
		8.6.3	Results	333
9	The	Varia	tional Principle: A Valuable Ally Assisting the	
-			stent Solution of Poisson's Equation and	
			sical Transport Equations	339
			us, Hamilton Carrillo-Nuñez,	
	and	Bart S	orée	
	9.1	Intro	luction	340
	9.2	The E	lectromagnetic Field: Lagrangian and	
		Action	1	342
	9.3	The P	rinciple of Least Action for Self-Consistent	
		Soluti	ons	343
	9.4	Ballis	tic Current in a Si Nanowire Transistor	346
		9.4.1	Hamiltonian and Electronic Structure	347
		9.4.2	Distribution Function, Kinetic and Constitutive	
			Equations	349
		9.4.3	Action Functional and Numerical Algorithm	351
		9.4.4	Some Results	354
	9.5	Outlo	ok	357
10	No	w Too	ls for the Direct Characterisation of FinFETS	361
10			amanzi, A. Paul, S. Lee, G. Klimeck, and S. Rogge	301
			roduction	361
	10		ansport in Doped N-FinFETs	362
	10		2.1 Thermionic Emission in Doped FinFET	302
		10.	Devices	363
			DCVICE3	202

	10.2.2	Analysis of the Thermionic Regime (High	
		Temperatures)	365
	10.2.3	Analysis of the Coulomb Blockade Regime	
		(Low Temperatures)	365
	10.2.4	Interpretation of the Results	367
	10.2.5	The Corner Effect	368
	10.2.6	Temperature Dependence of the	
		Conductance Peaks	368
	10.2.7	Conclusion	369
10.3	Transp	ort in Undoped N-FinFETs	369
	10.3.1	Introduction to Transport in Undoped	
		Devices	370
	10.3.2	Experimental Results	370
	10.3.3	Evolution of the Barrier Height with Gate	
		Voltage	372
		10.3.3.1 Capacitive coupling	372
	10.3.4	Evolution of the Active Cross Section with	
		Gate Voltage	374
	10.3.5	Comparison with Simulation	375
	10.3.6	Conclusion	377
10.4	Interfa	ce Trap Density Metrology of Undoped	
	N-FinF	ETs	377
	10.4.1	Introduction	377
	10.4.2	Aim	379
	10.4.3	New Implementation of Interface Trap	
		Metrology	380
	10.4.4	Device and Experimental Details	380
	10.4.5	Modeling Approach	381
	10.4.6	Extraction of Barrier Height and the Active	
		Cross Area Section	382
	10.4.7	Trap Extraction Methods	383
		10.4.7.1 Method I: D_{it} from active area	384
		10.4.7.2 Method II: D_{it} from barrier	
		control	385
		10.4.7.3 Limitations of the methods	387
	10.4.8	Results and Discussion	387
		10.4.8.1 Temperature dependence of the	
		barrier height	387

			10.4.8.2	Evolution of the barrier height and of the active cross-section	
				area with V_G	389
			10.4.8.3	Trap density evaluation	390
			10.4.8.4	Discussion of the two methods	
				and <i>D</i> _{it} trends	393
		10.4.9	Current l	Distribution	394
		10.4.10	Conclusi	on	395
	10.5	Final C	onclusion	S	396
11	Dopa	nt Metr	ology in A	Advanced FinFETs	399
	G. La	nsbergen	, R. Rahm	an, G. C. Tettamanzi, J. Verduijn,	
	L. C. I	Hollen	berg, G. Kl	imeck, and S. Rogge	
	11.1	Introdu	iction		399
	11.2	Recent	Progress	in Donor Spectroscopy	400
	11.3	Transp	ort-Based	Dopant Metrology in Advanced	
		FinFET	S		401
	11.4	Devices	5		402
		Devices Results			402 408
	11.5		-		

Preface

In 1965, Gordon Moore published his legendary paper "Cramming more components onto integrated circuits." In this paper, he described that the number of components in integrated circuits had doubled every year since the invention of the integrated circuit in 1958 until 1965 and that this trend would continue for at least 10 more years. Now, almost five decades later, industry is still following Moore's law, even though its end has been predicted on many occasions and even by Moore himself.

Indeed, one needs to point out that since the development of the 130 nm technology node, it has become more and more difficult to scale down the traditional MOSFET structure in order to keep up with the pace of Moore's law. Especially in the last decade, many innovations such as high-k/metal gate and strain engineering have been introduced to ensure the required performance improvement with every new technology node. However, these material innovations are not enough to control the ever-increasing off-state leakage problem in these advanced devices. New device architectures such as multi-gate devices have emerged as a means to solve this issue by increasing the gate control through geometry. Although proposed already in the beginning of the 1980s, multigate devices (Delta FET, FinFET, tri-gate, etc.) and more generally fully depleted transistors have long been considered the exotic devices that somehow were no real contenders to replace the planar bulk MOSFET. With Intel's announcement to introduce the tri-gate architecture on bulk substrates at the 22 nm technology node, a new era of MOSFET scaling arrived. It is expected that more companies will follow and introduce multi-gate devices at future technology nodes.

This book tries to give the reader an insight into the theory, technology, and circuit aspects of FinFET-based multi-gate transistors. It also goes one step further and extends the scope to nanowires and derived device architectures such as the junctionless nanowire FET. Further, some of the chapters discuss the new characterization and mathematical tools to predict the behavior of nanoscale structures.

As such, the book is divided into three main parts with a total of 11 chapters, each written by experts in the field:

Part I: Integration of Multi-Gate Devices (FinFET)

Chapter 1, "Introduction to Multi-Gate Devices and Integration Challenges," by Nadine Collaert, gives an overall introduction to multi-gate devices. It briefly reviews the history of multi-gate devices and discusses their specific advantages over standard bulk devices. Although the integration of these devices is very similar to their planar counterparts, a number of integration challenges are highlighted in this chapter.

Chapter 2, "Dry Etching Patterning Requirements for Multi-Gate Devices," by Efraín Altamirano-Sánchez, Tom Vandeweyer, Marc Demand, and Werner Boullart, describes the challenges of patterning high-density FinFET devices for the 22 nm technology node and beyond. Apart from the 193 nm lithography-based fin patterning, the use of full-field extreme ultraviolet (EUV) lithography is addressed in this chapter.

Chapter 3, "High-k Dielectrics and Metal Gate Electrodes on SOI MuGFETs," by Isabelle Ferain, covers the processing of high-k dielectrics/metal gate electrodes on fully depleted SOI MuGFETs or finFETs. In the second section of this chapter, several methods used for controlling and tuning the work function in MuGFETs with metal gates are described.

Chapter 4, "Doping, Contact and Strain Architectures for Highly Scaled finFETs" by Rob Lander, tackles one of the most important integration challenges of FinFET-based devices and thin Si film devices: reduction of the parasitic source/drain resistance. Next to that, more insight is given into strain engineering techniques in multi-gate devices.

Part II: Circuit-Related Aspects

Chapter 5, "Variability and Its Implications for FinFET SRAM," by Emanuele Baravelli, Luca De Marchi, and Nicolò Speciale, discusses physical-level models for fin and gate line-edge roughness (LER) that can be applied to estimate their impact on the FinFET electrical performance. Six-transistor (6T) SRAM is used as a benchmark to evaluate the impact of line-edge roughness at the circuit level.

Chapter 6, "Specific Features of MuGFETs at High Temperatures over a Wide Frequency Range," by Valeriya Kilchytska, Jean-Pierre Raskin, and Denis Flandre, focuses on the high-temperature behavior of SOI-based FinFET devices with a specific focus on analog and RF applications. Although FinFETs show excellent shortchannel behavior, it is not clear if they maintain their performance advantages at high temperatures. Some particular features of the high-temperature behavior of advanced FinFETs are highlighted in this chapter.

Chapter 7, "ESD Protection in FinFET Technology," by Steven Thijs, deals with the Electro-Static Discharge (ESD) robustness of multi-gate architectures. Especially, the early FinFET devices showed very low ESD robustness, which demonstrated the need of considering ESD already in a very early technology development phase. The impact of the different geometrical parameters and technology options is the focus of this chapter.

Part III: Exploratory Devices and Characterization Tools

Chapter 8, "The Junctionless Nanowire Transistor" by Bart Sorée, Ahn-Tuan Pham, Dries Sels, and Wim Magnus, introduces the junctionless nanowire transistor as an alternative device concept to the inversion mode nanowire MOSFET. An analytical model is used to describe the basic working principle. Furthermore, the impact of scaling down both the wire radius and the gate length is addressed in this chapter. Finally, an advanced transport model is used to investigate the impact of strain on the short-channel junctionless nanowire FET. Chapter 9, "The Variational Principle: A Valuable Ally Assisting the Self-Consistent Solution of Poisson's Equation and Semi-Classical Transport Equations," by Wim Magnus, Hamilton Carrillo-Nuñez, and Bart Sorée, attempts to give the reader some insight into the increasing mathematical complexity that is encountered when nanoscale devices are to be modeled with acceptable accuracy. Specifically, the variational principle is explored as a numerical tool to self-consistently solve Poisson's equation and a set of semiclassical transport equations to describe transport in nanoscale structures.

Chapter 10, "New Tools for the Direct Characterisation of FinFETs," by G. C. Tettamanzi, A. Paul, S. Lee, G. Klimeck, and S. Rogge, discusses how classical transport theories such as the thermionic emission in combination with state-of-the-art tight binding simulations can be used as a powerful tool for the study of the complex transport mechanisms in FinFETs.

Chapter 11: "Dopant Metrology in Advanced FinFETs," by G. Lansbergen, R. Rahman, G. C. Tettamanzi, J. Verduijn, L. C. L. Hollenberg, G. Klimeck, and S. Rogge, describes a new approach to atomistic impurity metrology. The method offers opportunities for non-invasive characterization down to the level of a single donor and could be a future tool in the guidance of device processing.

Finally, I would like to thank all the authors for making this book a diverse yet comprehensive text in which different aspects of nanoscale devices are addressed. Many thanks as well to everyone who indirectly contributed to this work. In particular, I would like to thank my husband, Gunther, and my children, Michiel and Karen, for their continuous support.

> Nadine Collaert July 2012