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Preface

In 1965, Gordon Moore published his legendary paper “Cramming

more components onto integrated circuits.” In this paper, he

described that the number of components in integrated circuits had

doubled every year since the invention of the integrated circuit in

1958 until 1965 and that this trend would continue for at least 10

more years. Now, almost five decades later, industry is still following

Moore’s law, even though its end has been predicted on many

occasions and even by Moore himself.

Indeed, one needs to point out that since the development

of the 130 nm technology node, it has become more and more

difficult to scale down the traditional MOSFET structure in order

to keep up with the pace of Moore’s law. Especially in the last

decade, many innovations such as high-k/metal gate and strain en-

gineering have been introduced to ensure the required performance

improvement with every new technology node. However, these

material innovations are not enough to control the ever-increasing

off-state leakage problem in these advanced devices. New device

architectures such as multi-gate devices have emerged as a means

to solve this issue by increasing the gate control through geometry.

Although proposed already in the beginning of the 1980s, multi-

gate devices (Delta FET, FinFET, tri-gate, etc.) and more generally

fully depleted transistors have long been considered the exotic

devices that somehow were no real contenders to replace the planar

bulk MOSFET. With Intel’s announcement to introduce the tri-gate

architecture on bulk substrates at the 22 nm technology node, a new

era of MOSFET scaling arrived. It is expected that more companies

will follow and introduce multi-gate devices at future technology

nodes.
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xvi Preface

This book tries to give the reader an insight into the theory, tech-

nology, and circuit aspects of FinFET-based multi-gate transistors. It

also goes one step further and extends the scope to nanowires and

derived device architectures such as the junctionless nanowire FET.

Further, some of the chapters discuss the new characterization and

mathematical tools to predict the behavior of nanoscale structures.

As such, the book is divided into three main parts with a total of

11 chapters, each written by experts in the field:

Part I: Integration of Multi-Gate Devices (FinFET)

Chapter 1, “Introduction to Multi-Gate Devices and Integration

Challenges,” by Nadine Collaert, gives an overall introduction to

multi-gate devices. It briefly reviews the history of multi-gate

devices and discusses their specific advantages over standard bulk

devices. Although the integration of these devices is very similar to

their planar counterparts, a number of integration challenges are

highlighted in this chapter.

Chapter 2, “Dry Etching Patterning Requirements for Multi-

Gate Devices,” by Efraı́n Altamirano-Sánchez, Tom Vandeweyer,

Marc Demand, and Werner Boullart, describes the challenges of

patterning high-density FinFET devices for the 22 nm technology

node and beyond. Apart from the 193 nm lithography-based

fin patterning, the use of full-field extreme ultraviolet (EUV)

lithography is addressed in this chapter.

Chapter 3, “High-k Dielectrics and Metal Gate Electrodes on

SOI MuGFETs,” by Isabelle Ferain, covers the processing of high-k

dielectrics/metal gate electrodes on fully depleted SOI MuGFETs or

finFETs. In the second section of this chapter, several methods used

for controlling and tuning the work function in MuGFETs with metal

gates are described.

Chapter 4, “Doping, Contact and Strain Architectures for Highly

Scaled finFETs” by Rob Lander, tackles one of the most important

integration challenges of FinFET-based devices and thin Si film

devices: reduction of the parasitic source/drain resistance. Next to

that, more insight is given into strain engineering techniques in

multi-gate devices.
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Preface xvii

Part II: Circuit-Related Aspects

Chapter 5, “Variability and Its Implications for FinFET SRAM,” by

Emanuele Baravelli, Luca De Marchi, and Nicolò Speciale, discusses

physical-level models for fin and gate line-edge roughness (LER)

that can be applied to estimate their impact on the FinFET electrical

performance. Six-transistor (6T) SRAM is used as a benchmark to

evaluate the impact of line-edge roughness at the circuit level.

Chapter 6, “Specific Features of MuGFETs at High Temperatures

over a Wide Frequency Range,” by Valeriya Kilchytska, Jean-

Pierre Raskin, and Denis Flandre, focuses on the high-temperature

behavior of SOI-based FinFET devices with a specific focus on

analog and RF applications. Although FinFETs show excellent short-

channel behavior, it is not clear if they maintain their performance

advantages at high temperatures. Some particular features of the

high-temperature behavior of advanced FinFETs are highlighted in

this chapter.

Chapter 7, “ESD Protection in FinFET Technology,” by Steven

Thijs, deals with the Electro-Static Discharge (ESD) robustness

of multi-gate architectures. Especially, the early FinFET devices

showed very low ESD robustness, which demonstrated the need of

considering ESD already in a very early technology development

phase. The impact of the different geometrical parameters and

technology options is the focus of this chapter.

Part III: Exploratory Devices and Characterization Tools

Chapter 8, “The Junctionless Nanowire Transistor” by Bart Sorée,

Ahn-Tuan Pham, Dries Sels, and Wim Magnus, introduces the

junctionless nanowire transistor as an alternative device concept to

the inversion mode nanowire MOSFET. An analytical model is used

to describe the basic working principle. Furthermore, the impact of

scaling down both the wire radius and the gate length is addressed

in this chapter. Finally, an advanced transport model is used to

investigate the impact of strain on the short-channel junctionless

nanowire FET.
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xviii Preface

Chapter 9, “The Variational Principle: A Valuable Ally Assisting

the Self-Consistent Solution of Poisson’s Equation and Semi-

Classical Transport Equations,” by Wim Magnus, Hamilton Carrillo-

Nuñez, and Bart Sorée, attempts to give the reader some insight

into the increasing mathematical complexity that is encountered

when nanoscale devices are to be modeled with acceptable accuracy.

Specifically, the variational principle is explored as a numerical

tool to self-consistently solve Poisson’s equation and a set of semi-

classical transport equations to describe transport in nanoscale

structures.

Chapter 10, “New Tools for the Direct Characterisation of

FinFETs,” by G. C. Tettamanzi, A. Paul, S. Lee, G. Klimeck, and

S. Rogge, discusses how classical transport theories such as the

thermionic emission in combination with state-of-the-art tight

binding simulations can be used as a powerful tool for the study of

the complex transport mechanisms in FinFETs.

Chapter 11: “Dopant Metrology in Advanced FinFETs,” by G.

Lansbergen, R. Rahman, G. C. Tettamanzi, J. Verduijn, L. C. L.

Hollenberg, G. Klimeck, and S. Rogge, describes a new approach to

atomistic impurity metrology. The method offers opportunities for

non-invasive characterization down to the level of a single donor and

could be a future tool in the guidance of device processing.

Finally, I would like to thank all the authors for making this

book a diverse yet comprehensive text in which different aspects of

nanoscale devices are addressed. Many thanks as well to everyone

who indirectly contributed to this work. In particular, I would like to

thank my husband, Gunther, and my children, Michiel and Karen, for

their continuous support.

Nadine Collaert
July 2012




