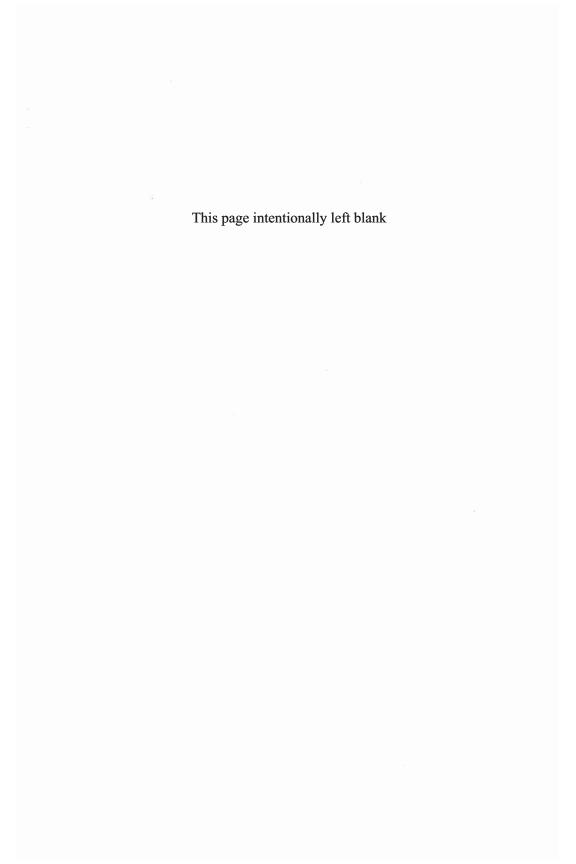


ZnO Nanostructures and Their Applications


Xiao Wei Sun and Yi Yang

ZnO Nanostructures and Their Applications

Xiao Wei Sun and Yi Yang

ZnO Nanostructures and Their Applications

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com

Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ZnO Nanostructures and Their Applications

Copyright © 2012 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center; Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher:

ISBN 978-981-4267-46-5 (Hardcover) ISBN 978-981-4303-91-0 (eBook)

Printed in the USA

Contents

Preface			
1. Introduction	1		
1.1 Multifunctional ZnO	1		
1.2 Properties of ZnO	2		
1.2.1 Crystal Structures	2		
1.2.2 Electrical Properties of Undoped ZnO	5		
1.2.3 n- and p-Type Doping of ZnO	6		
1.2.4 Optical Properties of ZnO	8		
1.2.4.1 UV emission of ZnO nanostructures	8		
1.2.4.2 Visible emissions of ZnO	10		
2. Exciton-Related Phenomena of ZnO at Nanoscale	15		
2.1 Introduction	15		
2.2 Radiative Lifetime of Aligned Nanorods	16		
2.2.1 Experimental Details	16		
2.2.1.1 Growth of nanorods	16		
2.2.1.2 Characterizations of the nanorods	17		
2.2.2 Exciton Lifetime of the Nanorods	17		
2.2.3 Conclusion	22		
2.3 Quenching of Surface Excitons	22		
2.3.1 Experimental Details	23		
2.3.1.1 Growth of ZnO nanocombs	23		
2.3.1.2 Surface modification by Ti-PIII	23		
2.3.2 Results and Discussions	24		
2.3.2.1 Morphology and chemical analysis			
of the NCBs	24		
2.3.2.2 TEM analysis of the NCB surface			
after PIII	25		
2.3.2.3 Low-temperature PL analyses in			
UV region	26		
2.3.4 Summary	29		
2.4 Quenching of Green Emission	29		
2.4.1 Experimental Details	29		

			2.4.1.1	Growth of ZnO nanostructures	29
			2.4.1.2	Surface modification by Ni-PIII	30
		2.4.2	Results	and Discussion	30
			2.4.2.1	SEM and XRD analyses of NCBs,	
				RNWs, and ANWs	30
			2.4.2.2	TEM analyses on the surface	
				structure after PIII	31
			2.4.2.3	PL spectra of NCBs, RNWs, and	
				ANWs, before and after PIII	33
			2.4.2.4	Low-temperature PL studies on ANWs	36
		2.4.3	Summa	ry	39
3.	Exc	itonic	Lasing	from ZnO Nanostructures	43
	3.1			nplified Spontaneous Emission	
				ZnO Nanofiber	43
			Introdu		43
		3.1.2	-	Preparation and Morphology	
				letwork	44
				of ZnO Nanofiber Networks	48
	3.2	•		oconverted Whispering Gallery	
			U	from ZnO Disk	50
		_	Introdu		50
			_	nental Details	51
				oton Pumped Lasing	52
			Model A	-	53
			-	n the Optical Gain Mechanism	55
	3.3	Sumr	nary		56
4.				mojunction Light-Emitting Diodes	61
			duction	1	61
		•	rimental		62
	4.3		,	actions Fabricated on Si Substrate	64 64
				Morphology	64
		4.3.2	_	Rod I–V Measurement of As-Doped	65
		422		mojunctions	
	1 1			op-Emitting Diode Grown on Si actions Grown on FTO/Sapphire	67
	4.4	Subst	•	icuons Grown on r 10/sappnire	70
				Morphology and High-Resolution	70
		4.4.1	Lattice		70
			Lattice	images	7 U

5.6.1 Preparation of Emitters by Screen-Printing

5.6.2 FE Properties of ZnO Tetrapod on Carbon

106

107

111

Method

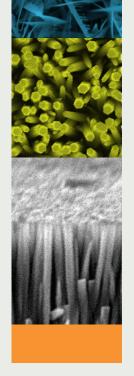
Fiber/Ag

5.7 FE from Triode Configuration Devices

		5.7.1	Efficien	nt Surface-Conducted FE from ZnO	
			Nanote	trapods	112
			5.7.1.1	Preparation of triode configuration	
				ZnO nanotetrapod emitters	112
			5.7.1.2	FE properties of triode configuration	
				ZnO nanotetrapod emitters	114
		5.7.2	Integra	tion of ZnO Tetrapod and MgO	
			_	article Composite emitter	119
			5.7.2.1	Preparation of ZnO/MgO composite emitter	119
			5.7.2.2	FE properties of ZnO/MgO composite	
				emitter	121
	5.8	Conc	lusion		124
6.				lectronic Papers	131
			duction		131
			ce Prepa		132
				cs of ZnO NWs	134
	6.4	Oxida	ation and	d Reduction Behavior	135
				g of EC Cell	136
	6.6	Conc	lusion		141
7.	App	olicati	ion in G	as Sensors	143
	7.1	Intro	duction		143
	7.2	Low	Operatin	ng Temperature Sensing of H_2 , NH_3 ,	
		and (O by Na	norod	144
		7.2.1	Prepara	ation of Sensing Device	144
		7.2.2	Gas Ser	nsing Properties of ZnO Nanorods	146
	7.3	CO G	as Sensii	ng Properties Using ZnO Microtube	
		Array	7		149
		7.3.1	Prepara	ation of Sensing Device	150
		7.3.2	Gas Ser	nsing Properties of ZnO Microtube	
			Array		153
		7.3.3	Sensing	g Mechanism	155
	7.4	n-p T	ransitio	n Sensing Behavior of ZnO Nanotubes	156
		7.4.1	Prepara	ation of ZnO Nanotubes	156
		7.4.2	Prepara	ation of Sensing Devices	158
		7.4.3	n-p Tra	nsition Sensing Property	158
	7.5	Conc	lusion		161

8.			on in Biosensors	165	
			duction	165	
	8.2	•	aring Nanostructure-Based Devices for	4.00	
		Biose	0	166	
		8.2.1	Synthesis of ZnO Nanocombs Using		
		0.00	VPT Method	166	
		8.2.2	Syntheses of ZnO Nanorods Array and		
			Hierarchical ZnO Nanodisks by Aqueous		
			Thermal Decomposition	167	
			Construction of the Biosensor	167	
		8.2.4	ZnO Morphologies and Structures		
			Fabricated by Vapor Phase Transport	168	
		8.2.5	ZnO Morphologies and Structures		
			Synthesized by Aqueous Thermal		
			Decomposition	170	
	8.3		rmance of the ZnO Nanostructure-Based		
		Biose	ensors	171	
			Characterization of Biosensor	171	
		8.3.2	Performance of the Nanocombs Biosensor	172	
			Performance of the ZnO Nanorods Biosensor	174	
		8.3.4	Performance of the Hierarchical ZnO		
			Nanodisk Biosensor	175	
	8.4	Concl	usions	178	
9.	Application in Dye-Sensitized Solar Cells				
		Introduction			
	9.2	Impro	oved DSSC Using ZnO Nanoflower by		
		Hydro	othermal Method	182	
		9.2.1	Preparation of DSSC Devices Using ZnO		
			Nanoflower	182	
		9.2.2	Performance of Nanoflower-Based DSSC		
			Device	185	
		9.2.3	Summary	188	
	9.3	Highl	y Bendable DSSC Using Hydrothermally		
		Grow	n ZnO Nanowires	188	
		9.3.1	Preparation of DSSC Device	190	
			Performance of Highly Flexible DSSC	191	
		9.3.3	Summary	194	
	9.4		cation of ZnO Nanorod-Nanowire		
			rchical Structure in QDSSCs	195	

	Index	r		237
11.	Conc	cludir	ng Remarks	235
		10.3.	3 Summary	232
			Single-NW FETs	229
		10.3.	2 Properties of Surface-Treated	
		10.3.	.1 Preparation of Single-NW FETs	226
	10.3	Surfa	ace-Modified Single-Nanowire Transistor	226
		10.2.	5 Summary	225
			of NW FeFET	219
		10.2.	4 Electrical and Memory Properties	
			of NW FeFET	218
			3 Structure and Surface Morphology	/
			2 Preparation of NW FeFET	217
			1 Operation Mechanism of FeFET	216
	10.4	Mem		215
			NW FET as a Nonvolatile Ferroelectric	213
TU.			on in Transistors eduction	215
10	Annl	icatio	on in Transistors	215
	9	9.6.4	Summary	211
	9	9.6.3	Characteristics of the CdSe-Sensitized DSSC	207
			ZnO Nanorod Photoanode	206
	Ç	9.6.2	Preparation of DSSC with CdSe-Sensitized	
			Introduction	205
			d Capping Effect for QDSSC	205
			Summary	205
	(Performance of the Co-Sensitized Solar Cells	202
			Nanostructures	202
			Preparation of Co-Sensitized Solar Cells Morphologies of the Flower-Like	201
				200 201
			r-Like ZnO Nanorod Structure Introduction	200
			nsitized Quantum QDSSCs Based on a	200
			Summary	200
			Hierarchical Structure	198
			Performance of QDSSC Device Using ZnO	
			Structure for Photovoltaic Application	195
	(9.4.1	Growth of Nanorod-Nanowire Hierarchical	


Preface

One-dimensional zinc oxide (ZnO) nanostructures have attracted wide research interest in the last ten years, because of their unique physical properties and potential device applications. ZnO is a wide-bandgap semiconductor with an unusually large exciton binding energy. The growth of ZnO has been widely explored over the years, and various nanostructures are already available commercially. As for the applications, research worldwide has demonstrated various new applications such as field emitters, light-emitting diodes, chemical sensors, biosensors, and solar cell. Our research group at Nanyang Technological University, Singapore, and Tianjin University, China, has conducted intensive research since 2002 with a focus on devices and published over 140 peer-reviewed papers in this dynamic field in international journals. Our publications in this area also received over 3000 citations. This book provides a comprehensive and coherent review about the development of one-dimensional ZnO-based applications directly derived from our research. The book is organized as follows: Chapter 1 reviews basic physical properties of ZnO. Chapter 2 reviews the prominent photoluminescnence properties of ZnO nanowire, such as radiative lifetime and surfacerelated emissions. Chapter 3 reviews excitonic lasing emission from ZnO nanostructures. Device applications in homojunctoin light-emitting diodes, field emissions, electronic display, gas detection, biochemical detection, solar cell, and transistors are summarized in Chapters 4–10, respectively, and the performance of our nanostructure-based devices has been evaluated. Finally Chapter 11 concludes the book with outlook and highlights in this research area.

We would like to thank those PhD students and post-doctoral fellows who have contributed to the works we described in this book, and without whom the book would not have been possible. They are Dr. Chunxiang Xu, Dr. Ang Wei, Dr. Jianxiong Wang, Dr. Changyun Jiang, Dr. Junliang Zhao, Dr. Swee Tiam Tan, Miss Bo Ling, Mr. Ko Ko

Kyaw Aung, Miss Jing Chen, Dr. Chen Li, and Mr. Chi Li. We would also like to thank Prof. Wei Lei from Southeast University for some collaborative works on field emissions, Dr. Xinhai Zhang and Dr. Lin Ke from Institute of Materials Research and Engineering for some optical characterizations; Prof. Jian Xu from Penn State University for some collaborative works on characterizing lasing properties; and Profs. Ting Yu and Ze Xiang Shen from Nanyang Technological University for some collaborations in making nanowire transistors.

> Xiao Wei Sun Yi Yang

"This is a concise, well-written, and well-illustrated book on the fundamentals and the latest development of the technological applications of ZnO nanostructures. It is based on the authors' excellent work as well as over 450 major literature references. The book is a must-read for students and researchers involved in photovoltaics, (opto)nanoelectronics, and sensing devices."

Dr Lionel Vayssieres

National Institute for Materials Science, Japan

As a multifunctional oxide semiconductor, ZnO has attracted substantial interest for a wide range of applications, including transparent conductors, UV light-emitting diodes (LEDs) and laser diodes, chemical and biochemical sensing, field-emitting devices, dye-sensitized solar cells, and host for diluted magnetic semiconductor. On the other hand, nanostructures made of various materials, including ZnO, such as nanowires, nanobelts, and nanoribbons, are an emerging class of one-dimensional and quasi-one-dimensional materials that have been extensively studied as fundamental building blocks for nanoscale science and technology.

This book focuses on the various functional properties and potential applications of one-dimensional ZnO nanostructures, from basic principles to the most recent discoveries. It comprises the experimental analysis of various properties of ZnO nanostructures, as well as their preparation techniques, research methods, and some promising applications. The areas of focus include ZnO-based gas/biochemical sensing devices, field emitters, solar cells, light-emitting diodes, e-papers, and single-nanowire-based transistors.

Xiao Wei Sun received his BEng, MEng, and PhD, all in photonics, from Tianjin University, China (1986–1994), and his second PhD in electrical and electronic engineering from the Hong Kong University of Science and Technology (1994–1998). In 1998, he joined the Division of Microelectronics at the School of Electrical and Electronic Engineering of Nanyang Technological University as an assistant professor and was promoted as an associate professor in October 2005. In 2010, he was invited to serve as the Dean of College of Science, Tianjin University. Prof. Sun has (co-)authored more than 250 peer-reviewed journal publications in the area of photonics and microelectronics, with more than 4,500 citations. He is a Fellow of the Society for Information Display, SPIE, and Institute of Physics (UK). He is also the founder and director of SID Singapore and Malaysia Chapter and was awarded the Nanyang Award for Research and Innovation 2009 for his research in ZnO nanodevices.

Yi Yang received her PhD from the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. Currently she is a scientist at Data Storage Institute, Singapore. Her interests include synthesis, characterization, and nanodevice applications of various metal–oxide–semiconductor materials and carbon-based materials. Dr Yang is familiar with various types of nanomaterial growth and device fabrication techniques and is a professional in surface chemical analysis and nano/microstructure analysis. She is a co-recipient of Singapore IES Prestigious Engineering Achievement Award and member of MRS-S, MRS, IEEE, and OSA.

