Edited by Koji Sugioka Ya Cheng

2

2

2

ULTRAFAST LASER PROCESSING

From Micro- to Nanoscale

ULTRAFAST LASER PROCESSING

Edited by

ULTRAFAST Koji Sugioka Ya Cheng PROCESSING

From Micro- to Nanoscale

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Ultrafast Laser Processing: From Micro- to Nanoscale

Copyright © 2013 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4267-33-5 (Hardcover) ISBN 978-981-4303-69-9 (eBook)

Printed in the USA

Contents

Prefa	се			xvii
1.	Overvi	ew of Ul	trafast Laser Processing	1
	Koji Su	gioka ar	nd Ya Cheng	
	1.1	Introdu	iction	2
	1.2	Charac	teristics of Ultrafast Laser Processing	3
		1.2.1	Nonthermal Process	3
		1.2.2	Suppression of Heat-Affected Zone	4
		1.2.3	Absence of Plasma Shielding	5
		1.2.4	Multiphoton Absorption	5
		1.2.5	Internal Modification	6
		1.2.6	Carrier Excitation in Dielectrics	7
		1.2.7	Spatial Resolution of Ultrafast Laser	
			Processing	7
	1.3	Ultrafa	st Laser Materials Processing	9
			Surface Micromachining	9
		1.3.2	Surface Micro- and Nanostructuring	11
		1.3.3	Nanoablation	13
		1.3.4	Two-Photon Photopolymerization	16
		1.3.5	Internal Modification of Transparent	
			Materials	18
		1.3.6	Biomedical Applications	21
			Industrial and Commercial Applications	22
	1.4	Summa	ary and Outlook	24
2.	Lasers	for Ultra	fast Laser–Materials Processing	37
	Mark H	Ramme, A	Andreas Vaupel, Michaël Hemmer,	
	Jiyeon	Choi, Ily	a Mingareev, and Martin C. Richardson	
	2.1	Introdu	iction	38
	2.2	Fundar	nental Interaction Processes: Laser	
		Depend		40
		-	Principal Physical Mechanisms in	
			Ultrafast Laser Processing	40
			2.2.1.1 Reduction of the damage	
			threshold	41

vi Contents

		2.2.1.2	Nonlinear absorption			
			processes	42		
	2.2.2 Ablation Mechanisms and Surface					
		Structuri	ing	43		
		2.2.2.1	Surface modification			
			thresholds	43		
		2.2.2.2	Material ablation	44		
		2.2.2.3	Surface texturing	46		
	2.2.3		erial Modification below the			
		Ablation	Threshold	46		
	2.2.4	Heat-Acc	rumulation Effects in Laser			
		Processi	ng	48		
2.3	Princip	al Applica	ation Areas and Their			
	Depend	dence on l	Laser Parameters	49		
	2.3.1	Microma	chining Based on Ablation	49		
	2.3.2	Surface S	Structuring	50		
	2.3.3	Back-Sid	e Structuring	51		
	2.3.4	Laser Su	rface Cleaning	51		
	2.3.5	3D Struc	turing and Microfluidics	52		
		2.3.5.1	Fusion welding of glass	52		
		2.3.5.2	Selective laser etching and			
			microfluidics	54		
	2.3.6	3D Laser	Lithography Based on			
			ton Polymerization	56		
	2.3.7	Structure	es in Refractive Index			
		Modifica	tion	57		
		•	plications	59		
2.4	Ultrash	ort Pulse	Lasers: Scientific and			
	Comme			60		
	2.4.1		evelopments on Ultrashort			
		Pulse Ge		60		
		2.4.1.1	Laser of the early days of			
			material processing (70s and			
			early 80s)	61		
		2.4.1.2	Broadening the spectrum and			
			the horizons (late 80s)	61		
		2.4.1.3	Energy scaling, pulse			
			shortening, wavelength			
			scaling (mid-80s to today)	62		

	2.4.2	Techniqu	ies for Generation of Ultra	
		Short Pu	lses at High Average Power	62
			Laser oscillators	63
		2.4.2.2	Mode-locking techniques	63
		2.4.2.3	Master oscillator power	
			amplifier	65
		2.4.2.4	Chirped pulse amplification	66
		2.4.2.5	Merging technologies: the	
			gateway to high-repetition-	
			rate, few-cycle high-energy	
			pulses	66
			High-Average Power, Ultrashort	
			chnology	67
			Fiber amplifier system	68
		2.4.3.2	Ti:Sapphire-based CPA	
			systems	69
			Solid-state, rod-type systems	70
			Slab systems	70
			Thin-disk systems	72
		2.4.3.6	Cryogenically cooled,	
			ultrashort laser system	73
			CPA, and the Next Generation	
		of Mid-IF		74
		2.4.4.1	Optical parametric	
			amplification (OPA)	74
		2.4.4.2	Optical parametric	
			chirped-pulse amplification	
o =	. II		(OPCPA)	74
2.5		-	cs, Online Monitoring, and	70
	Diagnos			76
			wer and Processing Speed	76
			on Optics and Regimes	77 79
			ng Stations	79
		Feedback	naging, Diagnostics, and	79
2.6				80
2.0		Prospects	velopment: The Split between	00
			Pulses and Industrial	
		Deploym		80
			dvances in Processing Stations	81
	2.0.2	i uture A	avances in i rocessing stations	01

	2.7	2.6.3 Summa	Laser-Fabricated Photonic Devices ary	82 82
3.	Fundar	nentals	of Ultrafast Laser Processing	99
	Nadezl	hda M. B	Pulgakova	
	3.1	Introdu	uction	100
	3.2	Materia	al Excitations by Ultrashort Laser	
		Pulses		104
		3.2.1	1 0	
			Block for Studies of Laser–Matter	
			Interaction at Ultrashort Irradiation	
			Regimes	105
		3.2.2	Metals: Insights from the	
			Two-Temperature Modeling	108
		3.2.3	Laser-Induced Processes in	
			Semiconductors	113
		3.2.4	Photoexcitation and Relaxation of	
			Transparent Dielectrics Irradiated by	
		G , 11	Ultrashort Laser Pulses	117
	3.3		s of Laser Ablation Mechanisms in	100
			nort Irradiation Regimes	122
		3.3.1	Molecular Dynamic Studies: Spallation	104
			and Phase Explosion	124
			Hydrodynamic Modeling	131
		3.3.3	Coulomb Explosion of Dielectric	120
	3.4	Volume	Surfaces	136 142
	3.4		e Modifications of Transparent Materials	142
		3.4.1	Propagation of Focused Laser Beams through Nonlinear Absorbing Media	143
		212	Heat Accumulation Effects	143
			Plastic Deformations	149
			Volume Nanogratings	152
	3.5		ice of Ambient Gas on Ultrashort Laser	154
	5.5		sing of Surfaces	156
	3.6	Conclu	0	159
	0.0	Solicita		107
4.	Spatial	and Ten	nporal Manipulation of Ultrafast Laser	
	Pulses	for Micr	o- and Nano-Processing	183
	Yoshio	Hayasal	ki and Satoshi Hasegawa	
	4.1	Introdu	action	184

Fundar	nentals of	Ultrafast Pulse Control	185
4.2.1	Mathema	atical Description of Ultrafast	
	Laser Pu	lse	185
4.2.2	Analogy	between Control of Time- and	
			186
4.2.3	-		
		-	
	Domain		188
4.2.4	Linear Fi	ltering	188
			189
4.2.6			
	-	-	
	-		190
4.2.7	0	-	191
	-		192
4.3.1	Double P	ulse Method	193
4.3.2	Material	Processing Using Temporally	
	Shaper	·	194
4.3.3	Adaptive	Control Based on Temporal	
	Pulse Sha	aping	195
	4.3.3.1	Minimization of pulse	
		duration	195
	4.3.3.2	Optimization of material's	
		response	196
Spatial	Pulse Sha	ping for Parallel Material	
Proces	sing		197
4.4.1	Requiren	nents of Spatial Pulse Shaping	
	and Its A	dvantages	198
	4.4.1.1	Parallel pulses and deformed	
		pulse	198
	4.4.1.2	Pulse energy and duration	198
	4.4.1.3	High throughput	199
	4.4.1.4	High energy-use efficiency	199
	4.4.1.5	High uniformity	200
	4.4.1.6	Variable pattern processing	200
	4.4.1.7	Instantaneous processing	201
4.4.2	Passive C	Pptical Components for	
	Spatial P	ulse Shaping	201
	4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 Tempo 4.3.1 4.3.2 4.3.3 Spatial Process 4.4.1	 4.2.1 Mathema Laser Pui 4.2.2 Analogy Space-Va 4.2.3 Analogy Frequence Domain 4.2.4 Linear Fi 4.2.5 Temporal Linear Fi 4.2.6 Spatial P Filtering Hologram 4.2.7 Frequence Temporal Pulse State 4.3.1 Double P 4.3.2 Material Shaped P Shaper 4.3.3 Adaptive Pulse Shaper 4.3.3 Adaptive Pulse Shaper 4.3.3 Adaptive Pulse Shaper 4.3.3 Adaptive Austrial 4.3.3 Adaptive 4.3.4 Adaptive 4.4.1 Requirem and Its A 4.4.1.2 4.4.1.3 4.4.1.4 4.4.1.5 4.4.1.6 4.4.1.7 4.4.2 Passive C 	Laser Pulse 4.2.2 Analogy between Control of Time- and Space-Varying Signals 4.2.3 Analogy between Control in Temporal Frequency Domain and Spatial Frequency Domain 4.2.4 Linear Filtering 4.2.5 Temporal Pulse Manipulation with Linear Filtering (Pulse Shaping) 4.2.6 Spatial Pulse Manipulation with Linear Filtering (Computer Generated Hologram) 4.2.7 Frequency Filter Optimization Temporal Pulse Shaping 4.3.1 Double Pulse Method 4.3.2 Material Processing Using Temporally Shaped Pulses Formed by a Pulse Shaper 4.3.3 Adaptive Control Based on Temporal Pulse Shaping 4.3.1 Minimization of pulse duration 4.3.3.2 Optimization of material's response Spatial Pulse Shaping for Parallel Material Processing 4.4.1 Requirements of Spatial Pulse Shaping and Its Advantages 4.4.1.1 Parallel pulses and deformed

x Contents

		4.4.2.1	Apertures (optical masks)	201
		4.4.2.2	Beam splitters	202
		4.4.2.3	Lens arrays	202
		4.4.2.4	Diffractive optical elements	202
	4.4.3	Active O	ptical Components for	
			ulse Shaping: Spatial Light	
		Modulat	ors	204
		4.4.3.1	Liquid crystal spatial light	
			modulators	204
		4.4.3.2	Deformable mirrors	205
	4.4.4	Optical S		206
		4.4.4.1	Image plane	207
		4.4.4.2	Fourier plane	207
			Fresnel plane	210
	4.4.5	-	Optimization of CGH in	
			ocessing System	211
4.	-	-	Pulse Manipulation	212
		-	mporal Dispersion Control	212
		-	mporal Focusing	212
			ve Spatiotemporal Focusing	212
		-	mporal Pulse Shaping	212
4.	6 Conclu	isions and	Future Perspectives	213
5. Su	rface Patter	ning, Drilli	ng, and Cutting	225
Ar	ndreas Osten	dorf and B	enjamin Schöps	
5.	1 Introd	uction		226
5.	2 Surface	e Patterni	ng	227
	5.2.1	Motivati	on	227
	5.2.2	Characte	ristics of Thin Film Ablation	228
	5.2.3	Patternii	ng with High Repetition	
		Rate Las	ers	230
	5.2.4	Beam Fo	cusing and Forming	232
	5.2.5	Applicat	ions	234
		5.2.5.1	Thin-film solar modules	234
		5.2.5.2	Self-assembled monolayers	237
		5.2.5.3	Nanotexturing, microbumps,	
			microjets	239
			Black silicon	241
			Wettability properties	242
5.	3 Bulk M	licromach	ining	244

		5.3.1	Motivati	on	244
		5.3.2	Characte	ristics of Bulk Machining	245
		5.3.3	Difference	es in the Absorption between	
			Metals ar	nd Dielectrics	247
		5.3.4	Plasma II	nfluence, Self-Focusing,	
			Filament	ation	248
		5.3.5	Applicati	ons	250
				Drilling	250
				Cutting	254
	5.4	Conclu	sion and F	Future Perspectives	256
6.	Ultrafa	ast Laser-	Assisted S	ourface Micro- and	
	Nanos	tructurin	Ig		263
	Етта	nuel Stro	atakis, Eka	iterina V. Barmina, Panagiotis	
	A. Lou	kakos, Ge	eorgy A. Sł	nafeev, and Costas Fotakis	
	6.1	Introdu	uction		263
	6.2	Fabrica	ation of Su	rface Micro/Nanostructures	
		by Ultr	afast Lase	r Processing in Gas Media	265
		6.2.1	Laser-Ind	luced Periodic Surface	
			Structur		267
			6.2.1.1	Characteristics of LIPSS	
				formation	267
			6.2.1.2	Proposed mechanisms for	
				LIPSS formation	277
			6.2.1.3	Applications of femtosecond	
				laser nanostructured surfaces	287
		6.2.2		on of Micro and Micro/Nano	000
				tructures	289
			6.2.2.1	Characteristics of micro/ nanostructures formation	202
			6777	Proposed mechanisms for	292
			0.2.2.2	micro/nano cones formation	295
			6223	Applications of micro/	275
			0.2.2.5	nanostructured surfaces	297
	6.3	Fabrica	ation of Su	Inface Micro/Nanostructures	<u> </u>
	010			r Processing in Liquid Media	314
		-		ogy of NS under Laser	
			-	of Planar Surfaces	315
		6.3.2		of NS on Pre-Patterned	
			Surfaces		324

xii Contents

		6.3.3 Optic	cal Properties of Metallic NS	328
		6.3.4 NS of	n Non-Metallic Surfaces	337
		6.3.5 Appl:	ications of NS	340
	6.4	Summary an	d Future Perspectives	345
7.	Nanoa	olation Using	Nanospheres and Nanotips	353
	Mitsuh	iro Terakawa	and Minoru Obara	
	7.1	Introduction		354
	7.2	Nanoablatio	n Using Nanosphere	355
		7.2.1 Plasr	non Polaritons and Mie Scattering	
		Near	Field	356
		7.2.2 Nanc	ablation Using Metallic	
			sphere	357
			ablation Using Dielectric	
			sphere	367
	7.3		n Using Nanotip	379
	7.4	Nanolens or		383
	7.5	Conclusions	and Future Perspectives	387
8.	Ultrafa		ed Phenomena in Transparent	
	onuna	st-Laser-Induc	eu Phenomena în Transparent	
	Materi		eu Phenomena în Transparent	393
	Materi	als		393
	Materi Kiyota	als	ıyuki Hirao, Yasuhiko Shimotsuma,	393
	Materi Kiyota	als ka Miura, Kazı	uyuki Hirao, Yasuhiko Shimotsuma, ra	393 394
	Materi Kiyota and Ma	als ka Miura, Kazi Isaaki Sakaku Introduction	uyuki Hirao, Yasuhiko Shimotsuma, ra	
	Materi Kiyota and Ma 8.1	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi	ıyuki Hirao, Yasuhiko Shimotsuma, ra	394
	Materi Kiyota and Ma 8.1	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi 8.2.1 Shoc	ıyuki Hirao, Yasuhiko Shimotsuma, ra cs of Ultrafast Laser Processing	394 394
	Materi Kiyota and Ma 8.1	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther	uyuki Hirao, Yasuhiko Shimotsuma, ra cs of Ultrafast Laser Processing k Wave Propagation	394 394 395
	Materi Kiyota and Ma 8.1 8.2	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type	<i>uyuki Hirao, Yasuhiko Shimotsuma, ra</i> cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion	394 394 395 400
	Materi Kiyota and Ma 8.1 8.2	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phote	<i>uyuki Hirao, Yasuhiko Shimotsuma,</i> ra cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena	394 394 395 400 402
	Materi Kiyota and Ma 8.1 8.2	als ka Miura, Kaza isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phote 8.3.2 Valer	<i>uyuki Hirao, Yasuhiko Shimotsuma, ra</i> cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena p-Induced Refractive Index Change	394 394 395 400 402 403
	Materi Kiyota and Ma 8.1 8.2	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phot 8.3.2 Valer 8.3.3 Form	<i>uyuki Hirao, Yasuhiko Shimotsuma, ra</i> cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena o-Induced Refractive Index Change nce State Change	394 394 395 400 402 403 408 412 415
	Materi Kiyota and Ma 8.1 8.2	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phot 8.3.2 Valer 8.3.3 Form	<i>uyuki Hirao, Yasuhiko Shimotsuma, ra</i> cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena o-Induced Refractive Index Change ace State Change hation of Elemental Distribution pitation and Growth of Silicon	394 394 395 400 402 403 408 412
	Materi Kiyota and Ma 8.1 8.2 8.3 8.3	als ka Miura, Kazu Isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phote 8.3.2 Valer 8.3.3 Form 8.3.4 Preci	<i>uyuki Hirao, Yasuhiko Shimotsuma, ra</i> cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena p-Induced Refractive Index Change ace State Change action of Elemental Distribution pitation and Growth of Silicon	394 394 395 400 402 403 408 412 415
	Materi Kiyota and Ma 8.1 8.2 8.3 8.3 8.4 3D Phc	als ka Miura, Kaza isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phote 8.3.2 Valer 8.3.3 Form 8.3.4 Preci Final Remark	<i>uyuki Hirao, Yasuhiko Shimotsuma, ra</i> cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena p-Induced Refractive Index Change ace State Change action of Elemental Distribution pitation and Growth of Silicon	394 394 395 400 402 403 408 412 415 421
	Materi Kiyota and Ma 8.1 8.2 8.3 8.3 8.4 3D Phc Nicola	als ka Miura, Kaza isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phote 8.3.2 Valer 8.3.3 Form 8.3.4 Preci Final Remark	ayuki Hirao, Yasuhiko Shimotsuma, ra cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena to-Induced Refractive Index Change ace State Change sation of Elemental Distribution pitation and Growth of Silicon cs	394 394 395 400 402 403 408 412 415 421
	Materi Kiyota and Ma 8.1 8.2 8.3 8.3 8.4 3D Phc Nicola	als ka Miura, Kaza isaaki Sakaku Introduction Characteristi 8.2.1 Shoc 8.2.2 Ther Various Type 8.3.1 Phot 8.3.2 Valer 8.3.3 Form 8.3.4 Preci Final Remark tonic Device F Bellini, Andrea	ayuki Hirao, Yasuhiko Shimotsuma, ra cs of Ultrafast Laser Processing k Wave Propagation mal Diffusion es of Laser-Induced Phenomena o-Induced Refractive Index Change ace State Change action of Elemental Distribution pitation and Growth of Silicon cs abrication <i>a Crespi, Shane M. Eaton, and</i>	394 394 395 400 402 403 408 412 415 421

		9.2.1	Exposure	e Parameters and	
			Consider	ations	428
			9.2.1.1	Pulse energy and translation	
				speed	429
			9.2.1.2	Low vs. high repetition rate	430
			9.2.1.3	Longitudinal vs. transverse	
				writing	431
		9.2.2		Materials	432
				Glasses	432
				Crystals	433
	9.3	Photon	ic Devices	5	436
		9.3.1	Passive I		436
				Power routing devices	436
				Discrete waveguide arrays	447
			9.3.1.3	Waveguide Bragg grating	
				devices	453
		9.3.2	Active De		457
				Waveguide amplifiers	457
				Waveguide lasers	461
				sed Devices	467
		9.3.4	-	ed 3D Devices	469
				Optofluidic devices	470
				Optomechanical devices	471
			9.3.4.3	Integrated circuits for	
				quantum information	450
	0.4		. ,	experiments	472
	9.4	Conclu	sions and	Future Outlook	475
10	Fabrica	tion of I	Microfluid	ic Chips and Integrated	
				ass by Femtosecond Laser	
	-	Writing		····, · · · · · · · · · · · · · · · · ·	489
		•	Koji Sugioł	<i>ka</i>	
	10.1	Introdu			489
	10.1			icrofluidic Structures in Glass	491
	10.2			cond-Laser-Assisted Wet	771
		10.2.1	Chemical		491
		1022		ssisted Femtosecond Laser 3D	171
		10.2.2	Drilling		499
	10.3	Fabrica	0	icro-Optical Components and	1))
	1010			ration in Glass	502
		optone			000

xiv Contents

		10.3.1 Fre	e-Space Micro-Optical Components	502
		10.3.2 Inte	egrated Optofluidic Systems	504
	10.4	Application	ns of Microfluidic and Integrated	
		Optofluidic	Chips in Biomedical Research	506
		10.4.1 Dyr	namic Observation of Living Cells	
		Usi	ng Nanoaquariums	506
		10.4.2 Opt	ical Sensing with Integrated	
		Opt	ofluidic Chips	510
	10.5	Conclusion	S	510
11.	Fabrica	tion of 3D Fi	unctional Microdevices by	
	Two-Ph	oton Photop	polymerization	519
	Dong V	/u, Xiao-Feng	g Lin, Qi-Dai Chen, Hong Xia,	
	Yong-L	ai Zhang, an	d Hong-Bo Sun	
	11.1	Introductio	n	520
	11.2	Femtoseco	nd Laser Micronanofabrication	
		Based on Ty	wo-Photon Photopolymerization	521
		11.2.1 Che	emical Processes	521
		11.2.2 The	e Spatial Resolution	523
		11.2.3 Sur	face Roughness	527
			terials Functionalization	531
	11.3	Micro-Opti	cal Components Macros	535
		11.3.1 Plan	nar Optical Devices	535
		11.3.2 Thr	ee-Dimensional Complex Photonic	
		Stru	ıctures	539
	11.4	Functional	Micromachines	544
		11.4.1 Ligl	ht-Driven Microdevices	544
		11.4.2 Mag	gnetic-Driven Micromachines	548
	11.5	Other Appli	ications	551
		11.5.1 Fun	ctional Microfluidic Components	551
		11.5.2 Bio	logical Applications	554
	11.6	Outlook		558
		11.6.1 Nov	vel 3D Optical Devices and	
		Inte	egrated Optical Circuits	558
		11.6.2 Mic	rofluidic Devices with Functional	
		3D	Components for Biological	
		App	olication	558
			ctrical-Optical Complex	
		Mic	romechanical Systems	559
	11.7	Conclusion	S	559

12.		ast Laser Processing: From Micro- to Nanoscale	569
		rial Applications	203
	Friedr	rich Dausinger and Steffen Sommer	
	12.1	Introduction	570
	12.2	Structuring of Surfaces	572
		12.2.1 Tribological Patterns	572
		12.2.2 Embossing and Moulding Tools	574
		12.2.3 Printing and Embossing Rolls	575
		12.2.4 Functionalization of Opto-Electronics	576
	12.3	High-Precision Drilling	578
	12.4	Separation	580
		12.4.1 Dielectrics	580
		12.4.2 Semiconductors	581
		12.4.3 Medical Devices	582
	12.5	Outlook	584
Index	C		587

Preface

The rapid development of ultrafast lasers (i.e., picosecond and femtosecond lasers) over the past few decades has opened up new avenues for materials processing that exploit the many advantages that such lasers have over conventional pulsed lasers (i.e., nanosecond lasers). The extremely short pulses of ultrafast lasers reduce the size of the heat-affected zone (HAZ) in processed regions, resulting in high-quality microfabrication of both soft materials and hard or brittle materials. The negligible HAZ can also give nanoscale spatial resolutions in fabrication. Another important advantage of ultrafast lasers is that they can generate extremely high peak powers. Focusing the laser beam produces sufficiently high peak intensities to induce efficient multiphoton absorption, even in transparent materials such as glass. This permits surface microstructuring and micromachining of transparent materials. Furthermore, by shifting the position of a tightly focused laser beam with a moderate pulse energy in a transparent material, multiphoton absorption can be confined to a region near the focus position, allowing internal modification and microfabrication of transparent materials. Ultrafast lasers have become common tools for micro- and nanoprocessing, and they are currently widely used in both fundamental research and practical applications. In fact, ultrafast lasers were used in over 60% of the studies presented at the 11th International Symposium on Laser Precision Microfabrication (LPM 2011, June 7–10, 2011, Takamatsu, Japan), one of the biggest and most important international conferences in the field of laser micro- and nanoprocessing.

Despite the rapid growth in this field, there are only a limited number of books that review ultrafast laser processing. We, thus, decided to edit a book that covers a broad range from fundamentals to scientific and industrial applications to provide comprehensive information on ultrafast laser processing. This book consists of 12 chapters that cover relevant topics in ultrafast laser processing, which have been reviewed by internationally recognized experts in the field. It includes an overview of ultrafast laser processing (Chapter 1), ultrafast laser systems and optics for materials processing (Chapter 2), fundamental mechanisms in the interaction of ultrafast laser beams with matter (Chapter 3), beam-shaping techniques for micro- and nanoprocessing (Chapter 4), surface patterning, drilling, cutting, micro- and nanostructuring, and nanoablation (Chapters 5–7), ultrafast laser-induced phenomena in transparent materials and internal modification (Chapter 8), applications of internal modification and microfabrication for fabricating three-dimensional (3D) photonic devices and biochips (Chapters 9 and 10), two-photon photopolymerization and 3D lithography and their applications (Chapter 11), and industrial applications (Chapter 12). Each chapter clearly presents the background, state-of-the-art techniques, and future prospects of the topic.

We believe that this book provides a realistic and comprehensive review of ultrafast laser processing and will be beneficial for students and young scientists who either are considering to work or have just started working in this area, as well as for researchers and engineers who are already working in this field.

Finally yet importantly, we would like to thank all the chapter authors for their great effort and wonderful work in writing informative chapters.

> Koji Sugioka Ya Cheng May 2013