
edited by OLIVER H. SEECK BRIDGET M. MURPHY

X-RAY DIFFRACTION

Modern Experimental Techniques

X-RAY DIFFRACTION

X-RAY DIFFRACTION Modern Experimental Techniques

edited by OLIVER H. SEECK BRIDGET M. MURPHY

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

X-Ray Diffraction: Modern Experimental Techniques

Copyright © 2015 by Pan Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4303-59-0 (Hardcover) ISBN 978-981-4303-60-6 (eBook)

Printed in the USA

Contents

eface			xii	
	rview of X- Technique	Ray Scattering and Diffraction Theory	1	
Oliv	Oliver H. Seeck			
1.1	Scatter	ring at Single Electrons	2	
1.2	Scatter	ring in Bulk Matter	5	
	1.2.1	Scattering in Disordered Matter	6	
	1.2.2	Scattering in Crystalline Matter	7	
	1.2.3	Scattering at Powders of Crystalline		
		Matter	10	
1.3	Scatter	ring at Surfaces	12	
	1.3.1	Scattering at Crystal Surfaces	14	
	1.3.2	Scattering at Surfaces with Density		
		Profile	16	
	1.3.3	Scattering at Rough Surfaces	19	
1.4	Some	Dynamical Scattering Theory	22	
2. Scat	tering and	Diffraction Beamlines at Synchrotron		
Radi	ation Sou	rces	29	
Oliv	er H. Seeck	ſ		
2.1	Synchi	rotron Radiation Sources	31	
	2.1.1	Bending Magnets	32	
	2.1.2	Wigglers	37	
	2.1.3	Undulators	38	
	2.1.4	Undulators at X-Ray Free Electron		
		Lasers	43	
2.2	Brillia	nce	45	
2.3	Beaml	ine Optics	47	
B. Mici	o- and Na	nodiffraction	55	
Chri	stina Kryw	vka and Martin Müller		
3.1	Introd	uction	55	
3.2	X-Rav	Focusing Optics	56	

vi Contents

4.

	3.2.1	Refractiv	re Optics	58	
		3.2.1.1	Metal compound refractive		
			lenses	58	
		3.2.1.2	Silicon nanofocusing		
			refractive lenses	60	
		3.2.1.3	Diamond lenses	61	
		3.2.1.4	Polymer lenses	62	
	3.2.2	Diffractiv	ve Optics	62	
		3.2.2.1	Fresnel zone plates	62	
	3.2.3	Reflectiv	e Optics	65	
		3.2.3.1	Kirkpatrick–Baez mirror	65	
		3.2.3.2	Multilayer KB mirror	67	
	3.2.4	Beam Co	ncentrating and Collimating		
		Elements	S	67	
		3.2.4.1	Capillaries	67	
		3.2.4.2	Waveguides	69	
3.3	Experi	iments		71	
	3.3.1	X-Ray Mi	cro- and Nanodiffraction		
		Instrume		72	
	3.3.2	Example	s of Micro- and Nanodiffraction		
		Experim		74	
		3.3.2.1	Small beams and		
			crystallographic parameters	75	
		3.3.2.2	μSAXS on single-cellulose		
			fibers	77	
		3.3.2.3			
			of the wood cell wall	78	
		3.3.2.4	5		
			wood cells	81	
	3.3.3		mage in Microdiffraction		
		Experim	ents	82	
3.4	Summ	ary		83	
Small-	Angle X-	-Ray Scatte	ering	89	
Ulla Va	ainio				
4.1	Introd	uction		90	
4.2	Experimental Setup				
	4.2.1 Sample Cells and Optimal Sample				
	_	Thicknes		93	
	4.2.2	Correctio	ons to Experimental Data	94	
			*		

		4.2.3 Absolute Intensity Scale	96			
	4.3	Theory	97			
		4.3.1 Scattering Length Density	99			
		4.3.2 Power Laws	100			
		4.3.3 Porod Constant	102			
		4.3.4 Scattering from Particles	103			
		4.3.4.1 Guinier approximation	105			
		4.3.4.2 Form factor	106			
		4.3.4.3 Structure factor	107			
		4.3.4.4 Polydispersity	109			
		4.3.4.5 Distance distribution				
		function	110			
		4.3.4.6 Kratky plot and Porod				
		invariant	111			
		4.3.5 Scattering from Fluctuations	113			
		4.3.6 Generalized Scattering Functions	113			
	4.4	Radiation Damage	114			
	4.5	BioSAXS	115			
	4.6	GISAXS	115			
	4.7	ASAXS	118			
5.	The X-Ray Standing Wave Technique: Fourier Analysis					
	with C	Chemical Sensitivity	129			
	Jörg Z	egenhagen				
	5.1	Introduction	129			
	5.2	Formation of an XSW	132			
	5.3	XSW Analysis	133			
	5.4	5				
		Factor	136			
	5.5	XSW Fourier Analysis: Imaging of Mn In GaAs	137			
	5.6	Summary	141			
6.	Inelastic X-Ray Scattering from Phonons					
	Alexeï	Bosak and Michael Krisch				
	6.1	Introduction	145			
	6.2	General Formalism	148			
	6.3	Experimental Technique	150			
	6.4	Mapping of Phonon Dispersion Surfaces	152			
	6.5	Combining IXS and TDS	154			

		6.5.1	Visualization of the Fermi Surface	
			of Zinc	155
		6.5.2	Giant Kohn Anomaly in ZrTe ₃	158
		6.5.3	Diffuse Scattering and Correlated	
			Disorder in Manganese Analogue of	
			Prussian Blue	162
		6.5.4	Powder Wide-Angle IXS	164
		6.5.5	Conclusions and Outlook	168
7.	Magn	etic X-Ray	y Scattering	175
	S. P. Co	ollins		
	7.1	Introdu	action	175
	7.2	Is Magi	netic X-Ray Scattering the Right	
		Technie	que?	177
	7.3	Strengt	th of the Magnetic Resonance	180
		7.3.1	Strong Magnetic Resonances	
			$(3d/4d/5d L_{2,3}; 4f/5f M_{4,5})$	180
		7.3.2	Weak Magnetic Resonances	
			(3d <i>K</i> ; 4f <i>L</i> _{2,3})	181
		7.3.3	Nonresonant Magnetic Scattering	182
	7.4	-	e Material	182
	7.5	•	Introduction	184
	7.6	Nonres	sonant Magnetic X-Ray Calculation:	
		FeBO ₃		185
	7.7	-	tic X-Ray Scattering Measurements:	
		FeBO ₃		189
	7.8		sion: FeBO ₃	193
	7.9	-	tic Scattering and Polarization	195
	7.10		ant Scattering and Atomic Multipoles	197
	7.11	Future	Directions	198
8.			ant Scattering of Synchrotron Radiation:	
	Applic	ations in	Magnetism	205
	Ralf R	öhlsberge	er	
	8.1	Introdu	uction	205
	8.2	Basic P	rinciples of Nuclear Resonant	
		Scatter	ing	207
	8.3	Imagin	g the Magnetic Spin Structure of	
		Exchan	ge-Spring Magnetic Layers	215

	8.4	Antifer	romagnet	ic Coupling in Fe/Cr	
		Multila	-		218
	8.5			d Magnetic Reversal in an	220
		Exchange Bias Layer System			
	8.6	Conclu	sion and (Jutlook	225
9.	Reflect	Reflectivity at Liquid Interfaces			
	Bridge	t M. Mur	phy		
	9.1	Introdu	iction		230
	9.2	X-Ray F	Reflectivit	у	231
	9.3	Fresnel	l Reflectiv	iy	231
	9.4			juid Surfaces	234
	9.5	Kinema	atic Scatte	ring Theory for Liquid	
		Surface	es		237
		9.5.1	-	ental Considerations	239
		9.5.2	Bulk Scat	0	240
	9.6	Instrun	nentation		241
		9.6.1		ystal Liquid Diffractometer	241
		9.6.2	-	ergy Liquid Diffractometer	241
		9.6.3		Crystal Liquid Diffractometer	243
	9.7	Examp			245
		9.7.1		ity from Water	245
		9.7.2		ity from Liquid Mercury	247
	9.8	Summa	ary		248
10.	X-Ray I	Diffractio	on at Extre	eme Conditions: Today and	
	Tomor	row			255
	Hanns-Peter Liermann				
	10.1 Introduction				
		10.1.1	Why X-R	ay Diffraction at Extreme	
		Conditi	ions		257
			10.1.1.1	Precise high-P and high-T	
				equation of state studies	258
			10.1.1.2	Studies on crystallographic	
				properties	260
			10.1.1.3	Phase stabilities studies	262
			10.1.1.4	Elastic–plastic behavior of	
				mantle minerals	263
		10.1.2	LVP vs. D	AC: Advantages and	
			Disadvar	itages	266

x Contents

	10.1.3	The Futu	re of X-Ray Diffraction		
		at Extren	ne Conditions in the DAC at		
		Synchrot	ron Facilities	267	
10.2	Standa	rd X-Ray I	Diffraction Techniques and		
			nents Used at Extreme		
	Condit			268	
	10.2.1	Powder I	Diffraction at Simultaneous		
		High Pre	ssure and Temperature in		
		the DAC	-	269	
		10.2.1.1	Laser-heated DAC	269	
		10.2.1.2	Resistive-heated DAC	274	
	10.2.2	Single Cr	ystal Diffraction in the DAC at		
		Simultan	eous High Pressure and		
		Tempera		279	
	10.2.3	Determin	nation of Pressure at High		
		Tempera	tures	281	
	10.2.4	Diffractio	on on Nano-Crystalline		
		Powders	, Amorphous Solid and		
		Liquids:	Use of the Total Scattering		
		Function	in the DAC	285	
10.3	New Directions in Extreme Conditions				
	Resear	ch at the T	Fhird- and Fourth-Generation		
	Light S	ources		287	
	10.3.1		Dynamic Experiments to Be		
		Conducte	ed at the Third- and Fourth-		
		Generati	on Sources	291	
	10.3.2	Possible	Single-Exposure and Pump		
		and Prob	e Experiments Using the		
		Time Str	ucture of PETRA III (ECB)		
		and the H	European XFEL (HED) for		
		Dynamic	Experiments at Extreme		
		Condition		293	
		10.3.2.1	Single exposure		
			experiments at third		
			generation synchrotron	293	
		10.3.2.2	Pump and probe		
			experiments at third		
			generation synchrotron	294	
		10.3.2.3			
			at fourth generation XFEL	296	

			10.3.2.4	Pump and probe experiments at the fourth-generation XFEL	296
	10.4	Summar	У		298
11.	Synchr	otron Ton	nography	1	315
	Astrid	Haibel			
	11.1	Measure	ement Pr	inciple of Synchrotron	
		Tomogra	aphy		316
		11.1.1 I	Monochr	omatization	317
	11.2	Absorpt	ion Tomo	ography	318
	11.3			Tomography	320
		11.3.1 l	Direct Ph	ase-Contrast Methods	321
		-		Phase-Contrast Methods	322
	11.4	-		h Magnifying X-Ray Optics	325
	11.5	0	•	construction	326
				lice Theorem	327
	11.6	Image A			329
	11.7			Quantitative 3D Image	
		Analysis			332
12	Cabara				
12.	Conere	ent X-Ray	Diffractio	on Imaging of Nanostructures	341
12.		-		On Imaging of Nanostructures Oleksandr M. Yefanov	341
12.		-	ints and		341 341
12.	Ivan A.	<i>Vartanya</i> Introduc	<i>ints and o</i> ction		-
12.	<i>Ivan A.</i> 12.1	<i>Vartanya</i> Introduc	ints and o ction it and Pai	Oleksandr M. Yefanov	-
12.	<i>Ivan A.</i> 12.1	Vartanya Introduc Coheren on Cryst	ants and o ction t and Par cals	Oleksandr M. Yefanov	341
12.	<i>Ivan A.</i> 12.1	Vartanya Introduc Coheren on Cryst 12.2.1	ants and o ction t and Par cals	<i>Oleksandr M. Yefanov</i> rtially Coherent Scattering t Scattering from a Finite	341
12.	<i>Ivan A.</i> 12.1	Vartanya Introduc Coheren on Cryst 12.2.1	unts and (ction t and Pa cals Coherent Size Crys	<i>Oleksandr M. Yefanov</i> rtially Coherent Scattering t Scattering from a Finite	341 345
12.	<i>Ivan A.</i> 12.1	Vartanya Introduc Coheren on Cryst 12.2.1 (12.2.2 (ants and o ction at and Par cals Coherent Size Crys Coherent Crystal w	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite stal t Scattering from a Finite-Size vith a Strain	341 345
12.	<i>Ivan A.</i> 12.1	Vartanya Introduc Coheren on Cryst 12.2.1 (12.2.2 (ants and o ction at and Par cals Coherent Size Crys Coherent Crystal w	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite rtal t Scattering from a Finite-Size	341 345 346
12.	<i>Ivan A.</i> 12.1	Vartanya Introduc Coheren on Cryst 12.2.1 (2 12.2.2 (12.2.3 I 12.2.3 I	unts and o ction t and Parals Coherent Size Crys Coherent Crystal w Partially Finite-Siz	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite ttal t Scattering from a Finite-Size vith a Strain Coherent Scattering from a ze Crystal	341 345 346
12.	<i>Ivan A.</i> 12.1	Vartanya Introduc Coheren on Cryst 12.2.1 (2 12.2.2 (12.2.3 H Experim	ants and o ction it and Pa- cals Coherent Size Crys Coherent Crystal w Partially Finite-Siz eental Ex	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite tal t Scattering from a Finite-Size with a Strain Coherent Scattering from a ze Crystal amples	341345346355
12.	Ivan A. 12.1 12.2	Vartanya Introduc Coherem on Cryst 12.2.1 (2 12.2.2 (12.2.3 I Experim 12.3.1 (ants and o ction t and Pa- als Coherent Size Crys Coherent Crystal w Partially Finite-Siz cental Ex Coherent	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite tal t Scattering from a Finite-Size with a Strain Coherent Scattering from a ze Crystal amples t X-Ray Imaging of Defects in	 341 345 346 355 358
12.	Ivan A. 12.1 12.2	Vartanya Introduc Coheren on Cryst 12.2.1 (12.2.2 (12.2.3 I Experim 12.3.1 (ants and o ction it and Par- cals Coherent Size Crys Coherent Crystal w Partially Finite-Siz coherent Coherent Colloidal	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite ttal t Scattering from a Finite-Size vith a Strain Coherent Scattering from a ze Crystal amples t X-Ray Imaging of Defects in Crystals	 341 345 346 355 358
12.	Ivan A. 12.1 12.2	Vartanya Introduc Coheren on Cryst 12.2.1 (2 12.2.2 (12.2.3 I Experim 12.3.1 (12.3.2 (12.3.2 (ants and o ction t and Para als Coherent Size Crys Coherent Crystal w Partially Finite-Siz coherent Coherent Coherent	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite tal t Scattering from a Finite-Size vith a Strain Coherent Scattering from a ze Crystal amples t X-Ray Imaging of Defects in Crystals t Diffraction Tomography of	 341 345 346 355 358 366
12.	Ivan A. 12.1 12.2	Vartanya Introduc Coheren on Cryst 12.2.1 (2 12.2.2 (12.2.3 I Experim 12.3.1 (12.3.2 (12.	ants and o ction t and Pa- cals Coherent Size Crys Coherent Crystal w Partially Finite-Siz ental Ex Coherent Colloidal Coherent Nanoisla	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite tal t Scattering from a Finite-Size vith a Strain Coherent Scattering from a ze Crystal amples t X-Ray Imaging of Defects in Crystals t Diffraction Tomography of nds from Grazing Incidence	 341 345 346 355 358 366
12.	Ivan A. 12.1 12.2	Vartanya Introduc Coherem on Cryst 12.2.1 (2 12.2.2 (12.2.3 I Experim 12.3.1 (12.3.2 (13.3 (ants and o ction t and Pa- als Coherent Size Crys Coherent Crystal w Partially Finite-Siz Ional Ex Coherent Coherent Coherent Nanoisla Small-An	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite tal t Scattering from a Finite-Size with a Strain Coherent Scattering from a ze Crystal amples t X-Ray Imaging of Defects in Crystals t Diffraction Tomography of nds from Grazing Incidence gle X-Ray Scattering	 341 345 346 355 358 366
12.	Ivan A. 12.1 12.2	Vartanya Introduc Coheren on Cryst 12.2.1 (2 12.2.2 (12.2.3 I 12.3.1 (12.3.2 (12.3.2 (12.3.3 (12.3.3 (ants and o ction t and Pa- cals Coherent Size Crys Coherent Crystal w Partially Finite-Siz coherent Coherent Coherent Nanoisla Small-An Coherent	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite stal t Scattering from a Finite-Size vith a Strain Coherent Scattering from a ze Crystal amples t X-Ray Imaging of Defects in Crystals t Diffraction Tomography of nds from Grazing Incidence egle X-Ray Scattering t-Pulse 2D Crystallography	 341 345 346 355 358 366 366 370
12.	Ivan A. 12.1 12.2	Vartanya Introduc Coheren on Cryst 12.2.1 (2 12.2.2 (12.2.3 I 12.3.1 (12.3.2 (12.3.2 (12.3.3 (12.3.3 (ants and o ction t and Para als Coherent Size Crys Coherent Crystal w Partially Finite-Siz coherent Coherent Coherent Small-An Coherent at Free-E	Oleksandr M. Yefanov rtially Coherent Scattering t Scattering from a Finite tal t Scattering from a Finite-Size with a Strain Coherent Scattering from a ze Crystal amples t X-Ray Imaging of Defects in Crystals t Diffraction Tomography of nds from Grazing Incidence gle X-Ray Scattering	 341 345 346 355 358 366 366

13. X-Ray F	Photon Correlation Spectroscopy	385		
Christi	Christian Gutt and Michael Sprung			
13.1	13.1 Introduction			
13.2	Theory	387		
	13.2.1 Equilibrium Fluctuations	387		
	13.2.2 Two-Time Correlation Functions	389		
13.3	XPCS via Split and Delay Techniques at XFEL			
	Sources	391		
13.4	X-Ray Cross-Correlation Analysis—Local			
	Bond Order in Liquids and Glasses	392		
13.5	Designing XPCS Experiments	393		
13.6	Experimental XPCS Setup	396		
13.7	Examples			
	13.7.1 Surface Dynamics of Thin Polymer			
	Films	398		
	13.7.2 Measuring Atomic Diffusion with			
	Coherent X-Rays	403		
	13.7.3 Antiferromagnetic Domain Wall			
	Fluctuations	406		
	13.7.4 Reentrant Glassy Behavior	409		
	13.7.5 Dynamical Heterogeneity in an Aging			
	Colloidal Gel	410		
	13.7.6 Local Bond Order in Colloidal Glasses	412		
	13.7.7 Summary	415		
Index		421		

Preface

The development of human culture accompanies the progressive understanding of nature. In the last few centuries, the progress was tremendous, especially upon realization that nature is based on complex interplay between interactions on microscopic and macroscopic scale. Regarding the properties of matter, microscopic interactions, in particular between the atoms, are of eminent importance and they basically determine all characteristics. Even fully macroscopic properties such as melting point, viscosity, and stiffness are based on interatomic and intermolecular interaction parameters. To accomplish detailed understanding of the microscopic aspects of nature, science fields such as atomic physics, materials science, chemistry, and theoretical biology have been established. During the past decade, the focus has been additionally put on engineering and technology applications, resulting in the so-called micro- and nanotechnology. In the 21st century, the miniaturization and use of nanomaterials is omnipresent, e.g., in computer and sensor technology and in optics, medicine, and cosmetics; the future potentials are huge.

For further advancements in micro- and nanotechnology, profound knowledge of the interatomic and intermolecular interaction parameters is essential. On the one hand, this is challenging for theoretical science groups that develop mathematical tools to understand nature. On the other hand, experimental tools have to be designed and utilized to actually probe the interactions on the atomic scale. Therefore, scientific instruments with methods based on electrons, ions, or photons have been designed. Some of them are available as (more or less) inexpensive laboratory equipment. However, for high-end applications, they can be very costly and complex with a need of well-trained personnel for operation.

Tremendous progress has been achieved in the development of tools based on X-radiation. During the past 50 years, the evolution went from laboratory sources, so-called X-ray tubes, which are still available today, to parasitic use of synchrotron radiation from particle physics experiments, dedicated storage rings for X-radiation, and finally to X-ray lasers. The latter two are large-scale facilities with construction costs of several hundred million US dollars up to USD 1 billion and significant manpower with hundreds of FTEs to run the experiments. All over the world, approximately 20 modern sources are available, of which four deliver high-energy photons and two X-ray lasers. Synchrotron radiation sources offer extraordinary high X-ray beam quality for high-precision measurements on the atomic or molecular scale with accessible time scales from seconds down to femtoseconds (in the case of X-ray lasers). At each of the sources, a large number of experimental stations have been accommodated, which are specialized on certain X-ray methods, such as micro-diffraction, small-angle scattering, X-ray photo emission, fluorescence spectroscopy, tomography, and many more.

Modern synchrotron radiation sources are available for the general scientific and industrial community. Users are mostly from fields in physics, chemistry, geoscience, materials science, biology, archeology, and related fields. Usually, beam time is distributed on a proposal-based system with external referees. For this, an applicant has to define the science case and to choose an experimental station that fits his purpose best. At this point, a potential user should be able to evaluate the capabilities of the experimental stations at the synchrotron radiation sources and to identify the X-ray methods that he wants to apply. Aside from the experimental station, the X-ray photon flux and energy, the beam size and the divergence, the coherence and timing are properties of eminent importance.

In this book, the most important X-ray scattering and diffraction methods are introduced along with some aspects about the production of X-radiation at synchrotrons. In the first two chapters, the basics of X-ray diffraction and scattering methods and an overview of the characteristics of synchrotron radiation are presented. Also, the X-ray optics of a synchrotron radiation experiment are explained, which enables the reader to estimate the flux and the other beam parameters at the sample. In the later chapters, experts explain the different scattering and diffraction techniques.

The chapters on micro-diffraction and small-angle scattering give insights into the research of macromolecular samples, crystalline or amorphous. For both methods, focusing of the beam is of eminent importance; therefore, in the micro-diffraction section, focusing techniques are introduced. The following two chapters focus on inelastic scattering and X-ray standing waves, which are widely used to investigate phonon- and electron-density distribution in hard condensed matter. The next two chapters are devoted to magnetism. Two fully different X-ray methods are applicable: Magnetic scattering, which is a diffraction method based on magnetic interaction with the X-rays, and nuclear scattering, which monitors changes in the hyperfine field of the nuclei induced by magnetism in the sample.

The three following chapters deal with special topics: scattering at liquid interfaces, extreme condition science with X-rays, and tomography. The first is demanding as many chemical and biological reactions appear at liquid interfaces. Extreme condition science (high temperature and high pressure) relies on well-established X-rays powder diffraction methods; however, the experimental setup is very complex and the present status is explained in the book. Tomography is also introduced, though it is not a particular scattering or diffraction method. In many cases, such as metallic sintered powders, tomography and scattering methods are complementary.

The last two chapters describe applications of coherent X-rays. The so-called speckle pattern that arises from scattering of coherent beams at disordered samples contains more information than standard scattering data and can be used to do imaging or timeresolved studies. The experimental techniques and the rather complex theory are introduced in these chapters.

This book gives an insight into the up-to-date X-ray scattering methods that are available at modern synchrotron radiation sources. It enables the reader to understand the basic concept behind the methods and therefore to plan an appropriate, synchrotron radiation–based experiment.