
Pan Stanford Series on Carbon-Based Nanomaterials — Volume 1

Carbon Nanotubes and Their Applications

edited by Qing Zhang

Carbon Nanotubes and Their Applications

Pan Stanford Series on Carbon-Based Nanomaterials

Series Editors

Andrew Wee and Antonio H. Castro Neto

Titles in the Series

Published

Vol. 1 Carbon Nanotubes and Their Applications Qing Zhang, ed. 2012 978-981-4241-90-8 (Hardcover) 978-981-4303-18-7 (eBook)

Forthcoming

Vol. 2 **Chemistry of Graphene** Loh Kian Ping, ed. 2013

Vol. 3 2D Carbon: Fundamentals, Synthesis, and Applications Wu Yihong, Shen Zexiang, and Yu Ting, eds. 2014 Pan Stanford Series on Carbon-Based Nanomaterials — Volume 1

Carbon Nanotubes and Their Applications

edited by Qing Zhang

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Carbon Nanotubes and Their Applications

Copyright © 2012 by Pan Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4241-90-8 (Hardcover) ISBN 978-981-4303-18-7 (eBook)

Cover image courtesy: Chao Liu Printed in the USA

Preface

Carbon nanotubes (CNTs) are a fantastic member of the carbon family. Their crystal structures are very close to graphite, belonging to sp^2 -bonded carbon, rather than sp^3 -hybridized carbon in diamond. Topologically, a single-wall CNT (SWCNT) can be constructed by rolling up a single layer of graphite or graphene along a certain direction into a tiny cylinder with a possible diameter from subnanometer to a few nanometers. Interestingly, the rolling-up direction and diameter or the chirality of an SWCNT determine its fundamental properties. Some SWCNTs have small energy bandgaps, showing semiconducting characteristics, whereas others do not have the bandgap and they are metallic ones. For CNTs with more than one cylindrical shell, the interactions between the shells must be taken into account. Indeed, different CNTs have different properties and application potentials. Until now, CNTs have not only attracted enormous research interest but also stimulated CNT-related applications and industrial development. This can be seen through the facts that more than 77,000 articles about CNTs have been published (ISI database, February 2012) and many CNTrelevant products are available on the market.

Extensive study of CNTs began in 1991 when very thin CNTs were observed by S. Iijima. Although tremendous progress has been made in understanding the fundamental properties of CNTs, optimizing CNT synthesis conditions and post-treatment processes, and exploring various potential applications, etc., are still very hot and active topics nowadays. The electrical and optical properties of SWCNTs are dominated by their chiralities. To obtain chirality-pure SWCNTs has been a dream for a long time. Precisely controlling CNT synthesis parameters and carefully selecting the catalysts used are confirmed to be the key factors that affect the chirality distribution of the grown CNTs. A large number of post-treatment processes have been reported to sort CNTs in terms of their semiconducting or metallic properties, their thickness and lengths, etc. The assembly of CNTs in desirable and controllable ways is another technical challenge. Many unique superior properties, say high electron

mobility in electronic applications, high Young's modulus and yield strength in mechanic applications, etc., can be brought into play only when CNTs are uniformly oriented. Major advances in handling CNTs have been propelled by enormous interest in assembling CNTs. In contrast, when the orientation of CNTs is not a critical factor to be considered, CNT random network can be directly incorporated into the devices that could be printed on a soft substrate in a large scale at a low fabrication cost. SWCNTs can be regarded as a onedimensional material that forms a perfect platform on which experimentalists could explore the mystery of physical puzzles observed only in a low-dimensional object. Super high sensitivity of CNTs, plus their high stability in most chemical environments and high compatibility to most biological materials, promotes CNTs to be utilized as the sensing elements in a wide variety of sensors for chemical and biological detections. Typically, CNT sensors are of much higher sensitivities than their counterparts made from other materials. However, how to improve the selectivity of CNT sensors is a big concern. CNT/polymers and CNT/metal composites have emerged as a class of new functional materials that are reinforced through embedded CNT network in favor of not only the composites' mechanical properties but also electrical properties. Besides, the study of CNTs and their composites in damping and viscoelastic properties is attracting more research attention. The investigation of these properties could lead to a feasible solution to dealing with the vibration damping in micro-/nanodevices. CNTs are not totally "black." Semiconducting CNTs are of direct bandgaps, and this greatly facilitates CNT-based optical and optoelectronic applications and opens the field of CNT nanophotonics.

This book collects 16 state-of-the-art chapters that cover the fundamental properties, relevant technologies and potential applications of CNTs. It gives an overview of the current status of the research and development activities of CNTs. It will be a valuable reference for scientists, researchers, engineers and students who wish to know more about CNTs. It will appeal to anyone involved in nanodevices, nanomaterials and nanofabrication.

Chapter 1 addresses the crystal structure and electronic band structure of SWCNTs. The density of states and singularities are presented to facilitate the discussion on the electronic and optical properties and basic phonon features of SWCNTs. Chapter 2 reviews various CNT synthesis techniques, especially chemical vapor deposition techniques, by which CNTs could grow at much lower temperatures compared with other commonly used methods. New approaches to efficiently growing high-quality CNTs at a large scale, macroscopically long CNTs, directed-grown CNTs, and chirality-pure CNTs are reviewed. The state-of-the-art synthetic assembly and postsynthetic assembly of CNTs are summarized in Chapter 3. It covers not only the assembly/alignment processes at a small scale for laboratory research purposes, but those for industrial production. Orientated CNTs are achievable in several post-synthetic treatments through electrical force, dielectrophoretic force, shear adhesion force, etc. Chapter 4 focuses on separating semiconducting CNTs from metallic ones. Several separation approaches with remarkably high capabilities are introduced in terms of the separation mechanisms and technical details. The electron transport properties and the electrical conductance of CNTs in response to electrical fields in the geometries of single-electron transistors, field-effect transistors, etc., are reviewed in Chapter 5. High carrier mobility is one of the key merits for CNT high frequency/speed electronic applications. The fabrication and high-frequency characterization of CNT field-effect transistors are summarized in Chapter 6. It has been demonstrated that tunneling field-effect transistors are capable of breaking through the smallest possible subthreshold swing for conventional metal-oxide-semiconductor field-effect transistors. In Chapter 7, the recent developments in CNT-based tunneling fieldeffect transistors are highlighted. High degree of CNT orientation may not be critical for some applications. A large category of CNT electronic devices are directly built on CNT random networks. Chapter 8 introduces several main techniques, including selective elimination or destruction of metallic CNTs and photolithographyassisted stripping to enhance the semiconducting behaviors of CNT networks. Metallic and multiwall CNTs have high electrical conductivities, and they also have extremely high aspect ratios. These make CNTs a very good material for electron field emitters. A comprehensive review on the recent development of CNT field emission technology for vacuum electronic applications in medical x-ray imaging and radiotherapy is presented in Chapter 9. There have been some arguments on ultrahigh temperature superconductivity of multiwall CNTs (MWCNTs). Chapter 10 presents several unusual magnetic experimental findings from Ni magnetic nanoparticles embedded in MWCNTs. The arguments on ultrahigh-temperature superconductivity of MWCNTs are revisited. The properties of CNTs are highly sensitive to the details how they interact with their surroundings. Based on these, a variety of CNT sensors have been developed. In Chapter 11, the electrocatalytic properties of CNTs and recent advances in CNT-based electrochemical biosensors are presented. In addition, CNT-based gas sensors and their sensing mechanisms are discussed in Chapter 12. Several measures to enhance the selectivity of CNT sensors are also highlighted. CNTs have excellent mechanical properties. The strength and weaknesses of applying CNTs and their composites to damping and viscoelastic applications are addressed in Chapter 13. Recent efforts have been devoted to spin and assemble CNTs into continuous lightweight and high-performance fibers. Various spinning methods, accompanied with different functionalities during spinning, are described in Chapter 14. The current status, future research focuses and challenges of several major CNT mechanical applications, including CNT nanomechanics and CNT actuators, are presented in Chapter 15. Finally, the origin of the optical nonlinearity of CNTs, the nonlinear effects, and potential CNT nonlinear applications are presented in Chapter 16.

I am thankful to all the authors for their substantial contributions to this book. I would like to express my gratitude to Pan Stanford Publishing for their kind support and assistance.

> **Qing Zhang** Singapore, February 2012

Contents

Prefa	се				v
1.	Fun	dament	tal Prope	erties of Carbon Nanotubes	1
	Jian	oing Zou	เ and Qin	g Zhang	
	1.1	Bondir	ng Betwe	en Carbon Atoms	2
	1.2	Structu	ure of a S	ingle-Wall Carbon Nanotube	3
	1.3	Electro	onic Strue	cture of Single-Wall Carbon	
		Nanot	ubes		5
		1.3.1	Graphe	ne Electronic Structure	6
		1.3.2		ructure of SWCNTs from Graphene	10
				f Curvature on Nanotube Bandgap	13
			-	of States (DOS) in SWCNTs	14
	1.4			of Carbon Nanotubes	15
		1.4.1		Dispersion Relations for Graphene	15
		1.4.2		Dispersion Relations for Carbon	
			Nanotu		18
	1.5			ties of Carbon Nanotubes	20
		1.5.1		on Rules	20
		1.5.2	Exciton	S	23
	1.6	Summ	ary		27
2.	Synt	thesis o	f Carbon	Nanotubes	31
	San	Hua Lim	n and Jian	yi Lin	
	2.1	Introd	uction		31
	2.2	Arc Dis	scharge		33
	2.3	Laser A	Ablation		34
	2.4	Chemi	cal Vapor	Deposition	34
		2.4.1	Scalable	e Production of Carbon Nanotubes	34
			2.4.1.1	Nano agglomerate fluidized (NAF)	
				Process	34
			2.4.1.2	HiPco process	39
			2.4.1.3	CoMoCat process	40
			2.4.1.4	Floating catalyst CVD method	42
		2.4.2	Macros	copic Assembly of CNTs	42

			2.4.2.1	Direct synthesis of long CNT	
				strands by floating catalyst CVD	43
			2.4.2.2	Spinning CNT fibers	46
			2.4.2.3	Super growth of aligned carbon	
				nanotubes	49
		2.4.3	Plasma-	Assisted Growth of CNTs	52
			2.4.3.1	Low-temperature synthesis	52
			2.4.3.2	Alignment of CNTs within plasma	
				sheath	56
			2.4.3.3	Controlled growth of CNTs on a	
				substrate with desired patterns	59
	2.5	Purifi		d Sorting of CNTs for Applications	60
		2.5.1	Purifica	tion	60
		2.5.2	0	of SWCNTs	61
			2.5.2.1	Surfactant-assisted dispersion of	
				SWCNTs	61
			2.5.2.2	Separation of metallic from	
				semiconducting SWCNTs	62
	2.6	Conclu	usions		65
3.		-		Nanotubes Toward Practical	
		icatio			73
	Yeha	i Yan, Ji	an Cui, an	nd Qing Zhang	
	3.1	Introd	luction		74
	3.2	Neces	sity of As	sembling CNTs	75
		3.2.1	Molecul	ar Devices	75
		3.2.2	CNT/Po	olymer Composites	77
	3.3	Appro		CNT Assembly	78
		3.3.1	-	ic Approaches	78
			3.3.1.1	Perpendicularly aligned CNTs	78
			3.3.1.2	8	80
			3.3.1.3	Perpendicularly aligned and	
				patterned CNTs	83
			3.3.1.4	Parallel aligned and patterned	
				CNTs	84
		3.3.2	-	nthetic Approaches	85
			3.3.2.1	Perpendicularly aligned CNTs	85
			3.3.2.2	8	87
			3.3.2.3	Perpendicularly aligned and	
				patterned CNTs	98

		3.3.2.4 Pa	rallel aligned and patterned	
		CN	ITs	99
	3.4	Conclusions		108
4.	Sepa	ration of Metallic a	and Semiconducting	
	Sing	e-Wall Carbon Nan	otubes	121
	Yuan	Chen, Andrew Keong	ı Ng, Shihe Bai, Rongmei Si,	
	Li We	ei, and Qiang Wang		
	4.1	Introduction		122
	4.2	SWCNT Structure a	nd Metallicity	123
	4.3	Electric Conductivi	ty	125
	4.4	Dielectrophoresis	-	125
	4.5	Chemical Reactivity	Į	127
	4.6	Separation Techniq	lues	131
	4.7	Metallicity Abunda	nce Evaluation	134
	4.8	Summary		136
5	Floct	ronic Applications	of Single-Walled Carbon	
э.		tubes	of Single-Walled Carbon	149
		Li and Qing Zhang		117
	-			150
	5.1		tors and Logic Circuits	150
			ontact CNTFETs tact CNTFETs	150 159
		5.1.2 Onmic-Con 5.1.3 CNTFET-Ba		159
			e Limit of CNTFETs	161
	5.2		nsistors and Circuits	167
	5.2	5.2.1 SWCNT-Bas		171
	5.3	Memory Devices	eu SEIS	173
	5.4	Other Electronic De	wices	104
	5.5	Summary Remarks		194
		C C		
6.		on Electronics for	High-Frequency	
		ications		203
			lougaret, Nan Meng, Emmanue	
		-	e, Dominique Vignaud, and Gill	es
	Dam			
	6.1	• • •	rbon Nanotube Field Effect	
		Transistor		204
			for High-Frequency	001
		Performanc	e	204

		6.1.2	Device Fabrication	205
		6.1.3	Device Characterization	208
			6.1.3.1 Direct current (dc)	
			characterization	208
			6.1.3.2 High-frequency characterization	209
6	5.2	High-F	Frequency Graphene Field Effect Transistor	211
		6.2.1	Graphene Synthesis	211
		6.2.2	GNRFET Fabrication	212
		6.2.3	DC Characterization of GNRFET	213
		6.2.4	HF Characterization of GNRFET	215
		6.2.5	Conclusion	216
7. F	From	ı Bulk '	FFETs to CNT-TFETs: Status and Trends	221
C	Chon	-	Low and Qing Zhang	
-	7.1		uction	221
7	7.2		Structure	222
7	7.3	Device	Operation and Issues of TFETs	223
		7.3.1	Working Principle	223
		7.3.2	8	224
		7.3.3		226
		7.3.4	. 011	226
		7.3.5	-	228
7	7.4		Design Trends	229
		7.4.1	, 8	229
		7.4.2	8 8	231
		7.4.3		233
		7.4.4		
			Thickness	234
_		7.4.5	Body Thickness	237
	7.5	-	erature Dependency of TFETs	239
	7.6		n Nanotube-Based Tunneling FETs	240
7	7.7	Summ	ary	246
			Based on Carbon Nanotube Random	
N	Vetw	orks		251
		-	and Chun-Wei Lee	
	3.1		uction	252
8	3.2		ure of Single-Wall Carbon Nanotubes	253
		8.2.1	Geometrical Structure	253

	8.2.2	Electror	nic Structure	254
		8.2.2.1	Tight binding calculation from	
			2-D graphite to nanotube	255
		8.2.2.2	Density of states (DOS) of S	
			WCNT	258
	8.2.3	Individu	al Single-Wall Carbon	
		Nanotul	be-Based Transistor (SWCNT-FET)	259
8.3	Sortin	g Carbon	Nanotubes	261
	8.3.1	Electrop	ohoresis	262
	8.3.2	Polyme	r Wrapping	263
	8.3.3	DNA Wr	rapping	265
	8.3.4	Selectiv	e Functionalization	267
8.4	Transi	istors Bas	ed on As-Grown SWCNT	
	Netwo	orks		270
	8.4.1	Aligned	SWCNTs from CVD Growth	271
	8.4.2	Random	1 SWCNTs from CVD Growth	272
8.5	Soluti	on Proces	ssable SWCNT Networks	274
			ntrifugation	274
		De-Bun	dling	276
	8.5.3	Selectiv	e Destruction of Metallic Tubes	278
8.6	Conclu	usions		282
Carl	oon Nar	10tube Fi	ield Emission Technology	
for V	/acuum	l Electror	nic Device Applications	289
Siger	n Wang			
9.1	Introd	luction		290
9.2	Carbo	n Nanotu	be Field Emission	290
9.3	Applic	cations of	Carbon Nanotube Field Emission	
			tronic Devices	294
	9.3.1	Carbon	Nanotube Field Emission x-Ray	
			for Medical Imaging and	
			erapy Applications	294
		9.3.1.1	Carbon nanotube field emission	
			x-ray tubes	295
		9.3.1.2	Carbon nanotube field emission	
			single-beam dynamic micro-CT	
			scanner	298
		9.3.1.3	Carbon nanotube field emission	
			multi-beam stationary micro-CT	
			scanner	301

9.

xiv Contents

			9.3.1.4	Carbon nanotube field emission multi-beam micro-radiotherapy	
				system	305
		9.3.2	Carbon	Nanotube Field Emission	303
		9.3.2		wer Microwave Devices	310
		9.3.3		Nanotube Field Emission	510
		9.3.3	Displays		312
	9.4	Summ		uture Directions	314
10.	Nove	l Magn	etic and	Electrical Properties of Carbon	
101		-		nt with Ultrahigh Temperature	
		rcondu			319
	-	meng Zł	-		
	10.1	Introd	uction		320
				rties of Nickel Nanoparticles	
			lded in M		323
	10.3			f the Diamagnetic Meissner	
			in Pure M	•	332
	10.4	Electri	cal Trans	port and Quantum	
		Phase	Slips		336
	10.5	Conclu	iding Ren	narks	347
11.	Carb	on Nan	otube-Ba	ased Biosensors	355
	Liang	y Su, We	nzhao Jia	, and Yu Lei	
	11.1	Introd	uction		355
	11.2	Electro	ochemica	l Properties of CNTs	356
		11.2.1	Structur	es and Electronic Properties	
			of CNTs		356
		11.2.2	Electroc	hemical Properties of CNTs	358
			11.2.2.1	Edge-plane defects	358
			11.2.2.2	Oxygenated species and	
				dopant defects	361
				Electrocatalysis of CNTs	361
	11.3	Functi	onalizatio	on of CNTs	362
		11.3.1	Oxidatio	on Treatment	362
				t Functionalization	363
				valent Functionalization	365
	11.4			nd Advantage of CNT-Modified	
			ode for Bi		367
		11.4.1	Non-Ori	ented CNT Electrode	368

			11.4.1.1	Drop-casting electrode	368
			11.4.1.2	Composite paste electrode	368
		11.4.2		l CNT Array Electrode	369
			11.4.2.1	Vertically aligned SWCNT	
				nanowires produced by	
				self-assembly	370
			11.4.2.2	CNT Nanoelectrode ensembles	
				produced by <i>in situ</i> growth	373
	11.5	Carbor	n Nanotuł	pe-Based Electrochemical	
		Biosen			376
		11.5.1		dase-Based Biosensors	377
			11.5.1.1	CNT-GOx-based biosensors	377
			11.5.1.2	CNT-HRP-based biosensors	383
			11.5.1.3	CNT-tyrosinase-based	
				biosensors	384
				CNT-laccase-based biosensors	385
			11.5.1.5	CNT-ascorbate oxidase-based	
				biosensors	385
			11.5.1.6	Other CNT-oxidase-based	
				biosensors	388
		11.5.2		hydrogenase-Based Biosensors	388
				CNT–GDH-based biosensors	390
				CNT-ADH-based biosensors	391
				CNT–GLDH-based biosensors	391
				CNT–LDH-based biosensors	392
		11.5.3		drolase-Based Biosensors	393
				CNT-OPH-based biosensors	393
				CNT-AChE-based biosensors	394
		11.5.4		nzyme System-Based	
			Biosenso		396
			11.5.4.1	CNT-GOx-HRP-based	
				biosensors	396
			11.5.4.2	CNT-AChE-ChO-based	
				biosensors	396
		11.5.5	CNT-Red	lox Protein-Based Biosensors	397
12.			otube-Ba	ased Gas Sensors: A State	
		e Art			415
		<i>ndavalli,</i> Introdi		in, and P. Legagneux	416
	12.1	murodi	uction		410

	12.2	Gas Sensing Using CNTFET: Carbon Nanotubes	
		Doping or Schottky Barrier Modulation?	417
	12.3	CNTFET-Based Sensors Achieved Using SWCNT	
		Networks	424
	12.4	Routes to Improve the Selectivity	427
	12.5	Conclusions	433
13.	Carb	on Nanotubes and Their Composites for	
	Visco	pelastic Applications	441
	Edwi	n Hang Tong Teo, Maziar Shakerzadeh, and	
	Beng	Kang Tay	
	13.1	Introduction	442
	13.2	Pure Carbon Nanotube Films	443
	13.3	Carbon Nanotube Composites	450
	13.4	Conclusions	461
14.	Towa	ard Multifunctional Carbon Nanotube Fibers	467
	Xiaoł	nua Zhang and Qingwen Li	
	14.1	Introduction	467
	14.2	Spinning of Carbon Nanotube Fibers	469
		14.2.1 Direct Spinning	469
		14.2.2 Dry Spinning	473
		14.2.3 Wet Spinning	476
	14.3	Mechanical Properties of CNT Fibers	480
		14.3.1 Comparison Between Different	
		Nanotube Fibers	480
		14.3.2 Morphological and Structural	
		Dependences	484
		Multifunctionalities of CNT Fibers	487
	14.5	Conclusion	491
15.		nanical Applications of Carbon Nanotubes	501
	Yani .	Zhang, Gengzhi Sun, and Lianxi Zheng	
	15.1	Introduction	502
	15.2	CNT Nanomechanics	504
		15.2.1 CNT Resonators as Mass/Force Sensors	504
		15.2.2 CNT Nanomechanics in Quantum Limit	507
		15.2.3 Other CNT Nanomechanics	512
	15.3	Macro-Scale CNT Actuators	517
		15.3.1 CNT Electrostatic Actuators	517

		15.3.2 CNT Electro	ochemical Actuators	518
		15.3.3 CNT Compo	osite Actuators	521
	15.4	High-Performance	CNT Fibers	526
		15.4.1 Wet-Spun C	NT Fibers	527
		15.4.1.1 Su	rfactant-based coagulation	
		sp	inning	527
		15.4.1.2 Lie	quid crystal-based solution	
		sp	inning	531
		15.4.2 Dry-Spun C		533
		15.4.2.1 Sp	inning from vertical-aligned	
			IT arrays	533
		-	inning from aerogel of CNTs	535
	15.5	Conclusions		538
16	Nonl	near Antical Pron	ortios of Carbon Nanotubos	
16.			erties of Carbon Nanotubes	549
16.	and	heir Applications	erties of Carbon Nanotubes	549
16.	and ' Kin K	Their Applications <i>tee Chow</i>	erties of Carbon Nanotubes	
16.	and <i>Kin K</i> 16.1	Their Applications <i>the Chow</i> Introduction		549 550
16.	and <i>Kin K</i> 16.1	Their Applications <i>the Chow</i> Introduction Nonlinear Optical F	erties of Carbon Nanotubes Properties of Carbon	550
16.	and <i>Kin K</i> 16.1 16.2	Their Applications <i>the Chow</i> Introduction Nonlinear Optical F Nanotubes	Properties of Carbon	
16.	and <i>Kin K</i> 16.1 16.2	heir Applications <i>ee Chow</i> Introduction Nonlinear Optical F Nanotubes Design and Fabrica		550 551
16.	and <i>Kin K</i> 16.1 16.2 16.3	Their Applications <i>ise Chow</i> Introduction Nonlinear Optical F Nanotubes Design and Fabrica Devices	Properties of Carbon tion of CNT-Based Optical	550 551 553
16.	and 7 <i>Kin K</i> 16.1 16.2 16.3 16.4	Their Applications <i>their Applications</i> Introduction Nonlinear Optical F Nanotubes Design and Fabrica Devices Nonlinear Applicat	Properties of Carbon	550 551 553 557
16.	and 7 <i>Kin K</i> 16.1 16.2 16.3 16.4	Their Applications <i>ise Chow</i> Introduction Nonlinear Optical F Nanotubes Design and Fabrica Devices	Properties of Carbon tion of CNT-Based Optical	550 551 553