

Nanoporous Materials for Energy and the Environment

Gilbert Rios
Gabriele Centi
Nick Kanellopoulos

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Nanoporous Materials for Energy and the Environment

Copyright © 2012 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4267-17-5 (Hardcover) ISBN 978-981-4303-12-5 (eBook)

Printed in the USA

Contents

Pre	face				X
Ack	nowl	edgmei	nts		XV
1	Self	-Orgai	nized Hy	brid Membranes: Toward a	
	Sup	ramol	ecular P	roton Conduction Function	1
	1.1	Self-C	rganized	l Hybrid Membranes	2
	1.2	Supra	molecul	ar Proton-Conduction Function	5
	1.3	A Sele	ected App	olication: PEMs	ϵ
	1.4	Concl	usions		9
2	Des	ign an	d Applic	ations of Multifunctional Catalysts	
	Bas	ed on 1	Inorgani	ic Oxides	13
	2.1	Heter	ogeneou	s Multifunctional Catalyst:	
		One S	ystem fo	r Several Transformations	13
	2.2	Desig	n and Pr	eparation of Multifunctional	
		Cataly	/sts		15
	2.3	Multi	functiona	al Catalysts in Chemical	
		Synth	esis		21
	2.4	Relev	ant Exan	iples	22
		2.4.1	Concert	ed Catalysis	22
			2.4.1.1	Catalytic reactions occurring on	
				acid-base bifunctional	
				heterogeneous catalysts	22
			2.4.1.2	Bifunctional catalysts for Heck	
				reactions	29
			2.4.1.3	Other examples of concerted	
				catalysis	30
		2.4.2	Tanden	n Catalysis	31
	2.5	Concl	uding Re	emarks	43

3 Use of Chemometric Analysis in the Characterization					
	of t	he Ads	orption	Properties of Nanoporous Solids	55
	3.1	Overv	riew		55
	3.2	Intro	duction		56
	3.3	Exper	imental		59
	3.4	Resul	ts and Di	scussion	59
4				ng and Polymer Behavior	71
	4.1	Intro	duction		71
	4.2	Force	Fields		72
	4.3	Realiz	zation of	Amorphous Packing Models	77
	4.4	Characterization of Polymer Structure and Behavior			
		from	Atomistic	Simulations	80
		4.4.1	Charact	erization of Free Volume and Its	
			Distribu	tion in Glassy Polymers	81
		4.4.2	Mobility	of Polymer Matrix and Diffusion of	
			Small M	olecules	85
	4.5	Sumn	nary		88
5	Mod	deling	of Gas T	ransport Properties and its use for	
	Stru	ıctural	l Charact	erization of Mesoporous Solids	91
	5.1	Intro	duction		91
	5.2	Dilute	Nonads	orbed Gas Flow (Knudsen Regime)	92
		5.2.1	Capillar	y Bundle Models	93
		5.2.2	Heterop	orous Network Model	94
			5.2.2.1	Relative gas permeability	95
		5.2.3	Macroso	copic Modeling	96
			5.2.3.1	Systematic permeation time-lag	
				analysis	97
			5.2.3.2	Interpretation of helium permeation	
				data	99
	5.3	Dilute	Adsorba	able Gas Flow (Henry Law Adsorption	
		Regio			102
		_	-	orous Network Model with	
			-	ional Physics of Flow	102
		5.3.2		ed Modeling of the Physics of Flow	104
	5.4			ort in the Multilayer Adsorption	
		Regio	_		107
		0 -			

6	Mei	nbrane Modeling and Simulation Across Scales	113
	6.1	Introduction to Multiscale Modeling	113
	6.2	Mechanisms of Transport in Membranes	116
	6.3	Atomistic Reconstruction of Inorganic Membrane	
		Materials	117
	6.4	Simulation of Sorption	118
	6.5	Simulation of Diffusion: Molecular Dynamics	119
	6.6	Coarse Graining: "Reduced Representations"	120
	6.7	Mesoscopic Scale Modeling of Membrane	
		Structure	121
	6.8	Simulation of Diffusion at the Mesoscopic Scale	124
	6.9	Lattice-Boltzmann Method	127
	6.10	Direct Simulation Monte Carlo Method	128
	6.11	Concluding Remarks	129
7	Hyb	orid Modeling of Membrane Processes	133
	-	Overview	133
	7.2	Introduction	134
	7.3	Why Hybrid Modeling	134
	7.4	• •	
		and Engineering	140
	7.5	0 0	141
		7.5.1 Solvent-Resistant NF	141
		7.5.2 <i>Membrane Bioreactors</i>	148
	7.6	Future Trends and Challenges	153
8	Mei	nbranes for Energy	157
		Clean Refineries	160
	8.2	Zero Emission Coal Plants	162
	8.3	Fuel Cells	164
	8.4	Electrolysis and Water Splitting	166
		Batteries	167
	8.6	Osmotic Power	167
9	Car	bon Nanotubes for Energy Applications	173
	9.1	CNTs for LIB Application	174
		9.1.1 Lithium-Ion Storage in CNTs	175
		9.1.2. CNTs as Active Materials for Electrode	177

		9.1.3	CNTs as Additive Materials for Electrodes	179
		9.1.4	CNTs-Based Composites Materials for	
			Electrodes	180
	9.2	CNTs	for Supercapacitor Application	182
		9.2.1	CNTs as Active Materials for Supercapacitors	183
		9.2.2	CNT-Based Composite Materials for	
			Supercapacitors	185
		9.2.3	Pseudocapacitance of CNTs and CNT-Based	
			Materials	186
	9.3	CNTs	in Polymer Electrolyte Membrane Fuel Cells	186
		9.3.1	Role of Defects and Surface Characteristics	
			in CNTs	190
		9.3.2	Role of Three-Phase Boundary	193
	9.4	Concl	usions and Outlooks	194
10	Cera	amic M	lembranes for Gas Treatment and	
		aratio		203
	-		rials and Architectures	205
	10.2	Applic	cations	209
	10.2.1 Membranes for Gas Separation			209
			10.2.1.1 Microporous membranes	209
			10.2.1.2 Dense membranes for transport of	
			O_2 and H_2	212
		10.2.2	2. Particle Filters	215
	10.3	Appli	cations Involving Multifunctional Materials	
		or De	_	218
		10.3.1	General Considerations on Membrane Reactors	218
		10.3.2	2 Membrane Reactors with Catalytic Ceramic	
			Membranes	221
			10.3.2.1 Catalyst dispersed in an inert	
			porous membrane	222
			10.3.2.2 Inherently catalytic membranes	223
			10.3.2.3 Photocatalytic membranes	224
		10.3.3	3 Other Multifunctional Devices Involving	
			Ceramic Membranes	225
			10.3.3.1 Catalytic particle filters for Diesel	
			engine exhaust gas treatment	225

	10.3.3.2 Ceramic membranes with adsorptive	
	properties	227
	10.4 Conclusion	228
11	Multifunctionnal Membranes Based on	
	Photocatalytic Nanomaterials	231
	11.1 Basic Principles on Photocatalysis and Membranes	232
	11.2 TiO ₂ Anatase-Based Membranes	237
	11.2.1 Experimental Details	237
	11.2.2 Results and Discussion	239
	11.2.2.1 Mesoporous anatase membranes:	
	Configuration 1	243
	11.2.2.2 Photoactive supports:	
	Configuration 2	245
	11.3 ZnO-Based Membranes	246
	11.3.1 Experimental Details	247
	11.3.2 Results and Discussion	248
	11.3.2.1 Membrane properties	249
	11.3.2.2 Photoactivity	250
	11.4 Membrane Shaping and Integration	251
	11.5 Conclusion	252
12	Nanostructured Titania Thin Films for Solar Use in	
	Energy Applications	257
	12.1 Requirements of Titania Photoanode for PEC	
	Solar Cells	258
	12.2 Preparation and Photoresponse of Titania Nanotube	
	Ordered Arrays	261
	12.2.1 Role of the Nanostructure	263
	12.2.2 Visible Light Absorption	267
	12.3 Titania Nanomembrane	272
	12.4 Titania Nanostructured Films for DSC Applications	274
	12.5 Conclusions and Outlooks	276
13	Inorganic Membrane Reactors for Energy	
	Applications	283
	13.1 Pd Membrane Reactors for Hydrogen Production	284
	13.2 Oxygen Selective Membrane Reactors	287

x Contents

13.3 Other Developments	288
13.4 Recent Developments at the University of Zaragoza	289
13.4.1 Glycerol Upgrading	289
13.4.2 Methanol Formation	290
13.4.3 Methane Aromatization	291
13.5 Conclusions	294
Index	299

Preface

Energy and environment are two closely related challenges for a sustainable future. We need an increasing availability of energy that is estimated to grow worldwide from the current 16TW to approximately 25TW by 2050, while at the same time it is necessary to address the issue of decreasing the impact on the environment associated with the increase of the energy production. To this end, a step enhancement in the introduction of breakthrough technologies is needed in the field of energy production, transport, and saving; of clean production; and of environment protection. At the core of these technologies and processes is the development of novel materials, such as catalysts, membranes, adsorbents, and advanced coatings. Most of the aforementioned materials are nanoporous because the presence of pores and interfaces induces unique properties in these materials, which are not present in the corresponding bulk materials.

The applications of these materials are very important and they already represent a very huge market of several tenths billion euros, covering aspects such as the following:

- Environmental separations, e.g., CH_4 and H_2 storage, N_2/CH_4 separation from natural gas, and NO_x removal
- Clean energy production and storage, e.g., H₂ production with CO₂ sequestration and porous electrodes for fuel cells
- Catalysis and photocatalysis, e.g., catalysis in refinery and chemical processes, catalytic purification of auto exhaust emissions, TiO₂ for new water treatment systems or in indoor/outdoor air purification
- Sensors and actuators, e.g., for fast and reliable gas detection

• Biological applications, e.g., new ways of controlling proteins, cells, and tissue interaction by tailoring the material topography and the spatial distribution of functional groups, more efficient bioseparations, enzymatic transformation of raw substances into high value products, and drug delivery systems with considerably improved properties

Nanoporous materials are a subset of porous materials, with pore diameters ranging from 1 to 100 nm. Among the more relevant properties of these materials are the high surface to volume ratio and the large porosity with a very ordered uniform nanoporous structure. A large part of inorganic nanoporous materials are made from oxides. They are often nontoxic, inert, and chemically and thermally stable even in extreme conditions. What makes these materials so fascinating and so attractive is the possibility to get various functionalities and properties by tailoring their nanostructure and their internal surface properties.

Developing these materials properly and making possible their production at an industrial level need new engineering concepts and novel characterization methods. It is also worth keeping in mind that a strong commitment to fully develop the desired functionalities is to develop effective control of system/process working conditions by applying novel concepts in the fields of nanofluidics, transport and reaction phenomena, characterization, modeling, and simulation.

It is thus evident that in addition to the design, the behavior of the nanoporous materials and the nanostructure changes during their application as a sequel of their interaction with the reaction medium are also crucial. To this end, there is a need to combine expertise ranging from the chemistry and science of materials to the material and system engineering, passing through the experimentation of their performances.

The achievement of the performance criteria — high adsorption capacity, high selectivity, favorable adsorption kinetics, excellent mechanical properties, good stability and durability in use, etc. — requires effective monitoring and controlling of the evolution of their properties during their synthesis. In addition, accounting for the high performance of the material as soon as the manufacturing process seems essential, this requires the application of novel methodologies that cap all of the length scales and even time scales.

From the aforementioned discussion it is clear that there is a need for strongly integrated and holistic approaches, involving many disciplines, skills, and know-how. Favoring the integration rather than the simple addition of competencies, as well as the loop schemes to the detriment of linear production processes, must also be a strong commitment in order to be able to realize a control system/process intensification by optimizing the whole chain from the molecular to the plant level. It is actually a strong paradigm of the think-tank on which our new economy of knowledge will be based.

Addressing the societal challenges for sustainable energy and environment protection by developing novel nanoporous materials is thus a very complex and multidisciplinary problem, which requires integration of a very broad range of knowledge and expertise in a novel vision and novel way of cooperation.

This is exactly the ambition and the aim of the three "complementary" Networks of Excellence (EC-FP6 - NMP's priority) and their Durable Integrated Structure (DIS):

- NanoMemPro/European Membrane House (EMH/ Membranes)
- IDECAT/European Research Institute on Catalysis (ERIC/ Catalysis)
- Inside Pores/European Nanoporous Materials' Institute of Excellence (ENMIX/Nanoporous materials)

The major objective of combining their complementary capabilities and competencies is the establishment of a world-class pole of excellence in the broad field of developing novel nanoporous materials and related processes for energy, environment, and other novel applications.

This book is a first result of this collaboration and it is based on a selection of contributions presented during 1st International Workshop on NanoPorous Material for Energy and Environment organized in Chania, Crete, 12-15 October 2008, which was organized by the three NoEs. The different chapters cover some of the key aspects of the broad topic of nanoporous materials for novel technologies, systems, and processes for clean and more efficient use of energy and environment protection. They also provide an example of the necessary, different interdisciplinary competencies, ranging from modeling to materials development and testing. The chapters are written by well-known experts in these fields, with the objective to first introduce the topic for a broader audience and then provide the new trends and developments in the area. The book may be thus used both for teaching specialized courses and for providing a concise overview of the perspectives and opportunities in the field to scientists and managers involved in the fields relevant to nanoporous materials.

> Gilbert Rios (Nanomempro/EMH) Gabriele Centi (IDECAT/ERIC) Nick Kanellopoulos (Inside Pores/ENMIX)

Acknowledgments

Thanks are due to Nick Kanellopoulos and his colleagues who took in charge the organization of the 1st NAPEN workshop in Chania, Crete.

We would also like to thank the European Commission/DG Research/NMP priority, which granted the financial support necessary for setting-up the three NoEs and which supported the idea of further cross-fertilization actions and thematic clustering between them. More particularly, thanks are due to Soren Bowadt, who acted as Project Officer for the three instruments.

Finally, Mr. Stanford Chong deserves praise to have offered the opportunity to publish this book, as well as all the authors for their invaluable contributions.