NANO PLASMONICS Vasily Klimov

NANO PLASMONICS

NANO PLASMONICS

Vasily Klimov

Translated from the Russian by Anna Sharonova

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Nanoplasmonics

Copyright © 2014 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4267-16-8 (Hardcover) ISBN 978-981-4267-42-7 (eBook)

Printed in the USA

Contents

	reface cknov	e vledgm	ents		xiii xv	
1	Intro	oductic	on		1	
2	The	World	of Nanop	particles	9	
	2.1	Role o	of Micro-	and Nanoparticles in the History of		
		Our C	ivilizatio	n	9	
	2.2	Mode	rn Metho	ods of Nanoparticle Synthesis	15	
		2.2.1	Method	s Based on Chemical Reactions in a		
			Solid Bo	ody	15	
		2.2.2	Nanoch	emistry Methods	16	
			2.2.2.1	Precipitation from colloid solutions	16	
			2.2.2.2	The reverse micelle synthesis	19	
		2.2.3	Gas-Pha	ase Synthesis of Nanoparticles	22	
		2.2.4	Nanolit	hography Methods of Metal		
			Nanopa	rticle and Nanostructure Synthesis	24	
			2.2.4.1	Electron beam and ion beam		
				lithography	25	
			2.2.4.2	Nanosphere lithography	26	
			2.2.4.3	Atom nanolithography with the help		
				of optical fields	27	
		2.2.5	Formin	g of Arbitrary Three-Dimensional Metal		
	Nanostructures with the Help of Focused Ion					
			Beams		29	
	2.3	Nano	particles	and Nanostructures Gallery	29	
	2.4	4 Conclusion				

3	3 Introduction to Electrodynamics of Metals					
	3.1 Maxwell's Equations and the Propagation of					
		Electromagnetic Waves	45			
	3.2	The Drude-Sommerfeld Theory of Optical Properties				
		of Metals	52			
	3.3	Optical Properties of Real Metals	55			
	3.4	Electric Permittivity of Small Particles	57			
	3.5	Dispersion in Free-Electron Gas and Bulk Plasmons	58			
4	Surf	ace Plasmons	63			
	4.1	Two-Dimensional Surface Plasmons	63			
		4.1.1 Surface Plasmons on a Plane Metal–Dielectric				
		Interface	64			
		4.1.2 Surface Plasmons in Planar Layered Media	70			
	4.2	One-Dimensional Surface Plasmons	75			
		4.2.1 Plasmons in Metal Wires of a Circular Cross				
		Section	76			
		4.2.2 Plasmons in Nanowires of Other Cross Sections	79			
	4.3	Excitation of Surface Plasmons	81			
		4.3.1 Attenuated Total Internal Reflection	83			
		4.3.2 The Surface Diffraction Grating Method	84			
		4.3.3 The Method of Nanolocalized Light Sources	85			
	4.4	Observation of Surface Plasmons	85			
5		Theory of Plasmon Oscillations in Nanoparticles	91			
	5.1	The " ε -Method" of Maxwell's Equations Solutions for				
		Particles of an Arbitrary Size	92			
	5.2	Application of the " ε -Method" to a Solution of				
		Maxwell's Equations for Nanoparticles	99			
	5.3	Implementations of the " ε -Method" of the Maxwell's				
		Equations' Solution	104			
		5.3.1 Analytical Solutions	104			
		5.3.2 Integral Form of the " ε -Method" and Its				
		Numerical Solutions	105			
	5.4	The Analogy between Localized Plasmons and Atoms				
		and Molecules	109			
6	Opti	cal Properties of Spherical Particles	115			
	6.1	Excitation of a Spherical Particle by a Dipole Source of				
		Light	116			

	6.2	Optic	al Resonances in Spherical Particles of an	
			rary Size	121
	6.3	Optic	al Properties of a Spherical Particle of an	
		Arbiti	rary Size	126
	6.4	The Q	Quasi-Static Theory of Optical Properties of	
		Spher	rical Nanoparticles	133
	6.5	The I	nfluence of Nonlocal Effects on Optical	
			erties of Spherical Particles	140
	6.6	Optic	al Properties of Layered Spherical Particles	148
		6.6.1	Optical Properties of Layered Nanoparticles in	
			a Homogeneous Field	148
		6.6.2	Spontaneous Emission of an Atom in the	
			Presence of Layered Spherical Particles	151
7			Properties of Nanospheroids	157
	7.1		ion Resonances in Spheroidal Nanoparticles	
			si-Static Approximation)	159
			Prolate Spheroids	159
			Oblate Spheroids	164
	7.2	-	al Properties of Spheroids	169
			Spheroids' Polarizability	169
		7.2.2	Spheroids' Scattering and Absorption Cross	
			Sections	172
		7.2.3	· · · · · · · · · · · · · · · · · · ·	
			the Vicinity of a Spheroid	174
			7.2.3.1 Prolate spheroids	175
			7.2.3.2 Oblate spheroids	179
	7.3		on Oscillations in Spheroidal Shells	180
	7.4		ffect of Retardation in Nanoparticles of	
		Spher	roidal and Related Shapes	185
8	Ont	ical Dro	perties of a Three-Axial Nanoellipsoid	193
0	8.1		eneral Solution of the Quasi-Static Problem of	193
	0.1		non Oscillations in a Three-Axial Nanoellipsoid in	
			ontext of the " ε -Method"	194
	8.2		cit Expressions for Plasmon Modes of a	1)4
	0.2	-	ellipsoid in the Cartesian Coordinates	197
	8.3		non Resonances in an Ellipsoid of a Finite Size	177
	0.5		ng the Effect of Retardation into Account)	206
		ູ່ເລກ	as the Breet of Retardation into Account	200

8.4	Optical Pr	operties of a Nanoellipsoid in a	
	Homogen	eous External Field	209
8.5	The Influe	ence of a Metal Nanoellipsoid on the	
	Spontaneo	ous Emission of an Atom	214
9 Loca	alized Plasm	nons in Polyhedral Nanoparticles	221
9.1	Optical Pr	operties of Dielectric Particles in the Form	
	of Regular	r Polyhedra (Platonic Solids)	222
9.2	Properties	s of Localized Plasmons in Nanoparticles of	
	a Complex	x Form	227
	9.2.1 AN	Ianocube and Related Geometries	227
	9.2.2 A D	ecahedron and Related Geometries	236
	9.2.3 A T	etrahedron, a Trigonal Prism, and Related	
	Geo	ometries	238
9.3	Conclusio	ns	247
10 Lo	calized Plas	mons in Nanoparticle Clusters	251
10	.1 The Cla	ssification of Plasmon Oscillations in a	
	Cluster	on the Basis of Plasmon Oscillations in the	
	Particle	es Composing It	252
	10.1.1	The System of Linear Integral Equations	
		Describing Plasmon Oscillations in a	
		Cluster of Nanoparticles	252
	10.1.2	Plasmon Oscillation Properties in Clusters	
		with Large Distances between	
		Nanoparticles: The Point Dipole Model	254
	10.1.3	Weakly and Strongly Localized Plasmon	
		Oscillations in Clusters of Strongly	
		Interacting Nanoparticles	261
10	.2 Two-Di	mensional Plasmons in a Cluster of Two	
	Nanow	ires	261
10	.3 Plasmo	ns in a Cluster of Two Nanospheres	265
10	.4 Local F	ields' Enhancement in a Cluster of Two	
	Nanosp	heres	277
10	.5 Plasmo	ns in a Cluster of Two Different	
	Nanosp	heres and in Nonsymmetric Nanoshells	278
10	.6 Plasmo	ns in a Cluster of Two Nonspherical	
	Nanopa	articles of Finite Volume	282

		10.6.1	Plasmon Oscillations in a Cluster of Two					
			Nanocubes	282				
		10.6.2	Experimental Study of Plasmon Oscillations					
			in a Cluster of Two Gold Nanodiscs	283				
		10.6.3	Plasmon Oscillations in a Cluster of Two					
			Nanospheroids	284				
	10.7	Plasmo	ons in the Region of the Nanocontact of Two					
		Plasmo	on Bodies of Infinite Volume	301				
	10.8	Plasmo	ons Oscillations in a Cluster of More Than					
		Two Pa	nrticles	306				
		10.8.1	Plasmon Properties of Linear Clusters:					
			Quasi-Static Approximation	306				
		10.8.2	Plasmon Properties of Linear Clusters:					
			Retardation Effects	318				
		10.8.3	Plasmon Properties of Self-Similar Clusters	324				
		10.8.4	Plasmon Properties of Starlike Clusters	325				
	10.9	Influen	ce of Plasmon Resonances in a Cluster of					
		Nanoparticles on the Radiation of Atoms and						
		Molecu	lles	326				
	10.10	Plasmo	on Nanoparticles Influence on the van der					
		Waals I	Forces between Nanoparticles	334				
	10.11	Plasmo	on Resonance Excitation in a Cluster of					
		Nanopa	articles	338				
11	Optic	al Prope	rties of Metamaterials and Nanoparticles					
	Made from Them							
	11.1	Optics	of Particles with a Negative Refractive Index	353				
		11.1.1	Main Properties of Media with a Negative					
			Refractive Index	353				
		11.1.2	Experimental Realization of Media with a					
			Negative Refractive Index	358				
		11.1.3	Focusing Properties of a Slab Made of a					
			Metamaterial with a Negative Refractive					
			Index	364				
		11.1.4	Plasmon Resonances in a Sphere of a					
			Material with a Negative Refractive Index					
			and Their Influence on the Radiation of					
			Atoms and Molecules	370				

	11.2		Properties of Chiral Particles	377
		11.2.1	Main Properties and Methods of Chiral	
			Media Implementation	377
		11.2.2	Optical Properties of a Spherical Chiral	
			Particle	383
		11.2.3	Waves in an Infinite Uniform Chiral	
			Medium	383
		11.2.4	Spherical Waves in Chiral Media	387
		11.2.5	Optical Properties of a Spherical Chiral	
			Particle Placed in the Field of a Plane Wave	388
		11.2.6	Spontaneous Emission of Optically Active	
			Molecules Induced by the Presence of	
			Nearby Chiral Nanoparticles	391
12	Optic	al Proper	ties of Nanoholes in Metal Films	405
	12.1	-	Properties of a Circular Hole in an Infinitely	
		-	erfectly Conducting Screen	
			Bouwkamp Theory)	406
	12.2	-	ar Hole in a Screen of Finite Thickness	409
		12.2.1	Localized Plasmons in a Nanohole	410
			Localized Surface Plasmons and Light	
			Transmission through a Hole	415
	12.3	Extraor	dinary Light Transmission through Arrays	
		of Nano		418
	12.4		rn of Radiation Outgoing from a	
		Nanoap		425
	12.5	-	cence of Atoms and Molecules Near a	
		Nanoap		428
		•	Influence of a Circular Nanoaperture in a	
			Perfectly Conducting Screen on	
			Spontaneous Emission of an Atom or a	
			Molecule	428
		12.5.2	Experimental Investigations of Molecules'	
			Emission Near Nanoapertures	434
	12.6	Conclus	-	438
13	Annli	cations o	f Nanoplasmonics	445
	13.1		Therapy and Visualization with the Help of	
		Nanopa		445
		· · · · ·		-

	13.2 Biosensors on Surface Plasmons				
	13.3	Biosensors Based on Localized Plasmons in			
		Nanopa	iticles	451	
		13.3.1	The Method of Nanoparticle		
			Agglomeration	451	
		13.3.2	The Method of Change of Local Dielectric		
			Permittivity	454	
	13.4	Spectro	scopy of Single Plasmon Nanoparticles	457	
	13.5	Elemen	t Base for Plasmonic Integrated Circuit	459	
		13.5.1	Passive Elements	460	
		13.5.2	Active (Dynamic) Elements	468	
	13.6	Applica	tions Based on the Nanoparticles' Influence		
		on the F	Radiation and Fluorescence of Atoms and		
		Molecul	les	472	
	13.7	Super- a	and Hyperlenses Based on Surface		
		Plasmo	ns and Metamaterials	488	
	13.8	Invisibi	lity Cloaks Based on Metamaterials	498	
14	Concl	usion		521	
Ani	nendiv	A1. Show	rt Theory of Spontaneous Emission and		
лрι	Jenuix		prescence of Atoms and Molecules in the		
			sence of Nanobodies	523	
			The Nanobodies' Influence on the Rate	020	
			of an Atom's or a Molecule's Spontaneous		
			Emission	523	
		412	Nano-Objects' Influence on Fluorescence	525	
		111.2	of Molecules	527	
			of molecules	527	
App	pendix	A2: Popt	ular Numerical Methods in Nano-Optics		
		and	Nanoplasmonics	533	
		A2.1	Discrete Dipole Approximation	534	
		A2.2	The T-Matrix Method	537	
		A2.3	The Multiple Multipole Method	539	
		A2.4	The Finite-Difference Time Domain Method	542	
		A2.5	Numerical Methods Based on the Integral		
			Form of Maxwell's Equations	548	
		A2.6	Other Numerical Methods	550	

	A2.7 Commercial Simulators for Nano-Optics	
	and Nanoplasmonics	551
	A2.8 Conclusion	551
Appendix A3	: Acronyms and Terms Used Frequently in Nanoplasmonics, Nano-Optics, and Related	
	Sciences	557
Index		567

Preface

Nanoplasmonics is a component of nano-optics, which is optics at the nanometer scale. The subject of nanoplasmonics is optical properties of metal nanoparticles and nanostructures determined by electron oscillations around a crystal lattice. Primarily, the importance of nanoplasmonics is based on two factors. First, localization and enhancement of optical fields can occur owing to the presence of a spatial nanoscale substance (the lightning rod effect). Second, frequencies of metal nanoparticle eigenoscillations are located in optical spectrum in ranges from ultraviolet to infrared. Coexistence of these two properties of metal nanoparticles causes an interesting and complex physics, which forms the basis for numerous applications.

More specifically, the properties of metal nanoparticles and related physics are determined, first of all, by their shape: any variation from a trivial spherical form leads to the origin of new properties and peculiarities. Almost full control over shapes of nanoparticles allows one to talk about full control over their optical properties. The adjustability of plasmonic nanoparticles allows for their effective interaction between themselves and with light, atoms, and molecules. In other words, this book deals with the investigation of the influence of the geometry and shapes of nanoparticles on their properties. This aspect is extremely important because until now for simplicity many researchers have considered wave propagations in infinite systems which have no peculiarities related to real nanoparticles of finite volume. Moreover, sometimes such infinite systems have pathological properties.

Despite the rapid growth of nanoplasmonics, its main achievements are scattered over many journal publications, and one of the main goals of this project is to make a first-time systematic presentation of results obtained over the world. Though many results in this area were obtained by me personally, this book is based, of course, not just on my results. I have tried to make the book as self-sufficient as possible from the theoretical point of view, and I expect that many formulas can be used immediately by both theorists and experimentalists in nanoplasmonics and related areas. Theoretical methods and approaches presented in the book can be also applied in further original investigations. As to the experimental aspects of nanoplasmonics, this work contains, first of all, an overview of fundamental experiments and applications having reputable substantiation and interpretation.

Although I have tried to make the book comprehensible to a wide audience, some parts of it are rather complicated and need special grounding. That is why for better perception the book is supplied with a lot of photographs, pictures, plots, and diagrams. These illustrations will be especially useful for those readers who have just entered into this domain of science. From this point of view, the electronic edition will be most useful because the majority of illustrations in it are in full color.

Although currently nanoplasmonics is of great importance, I decided to issue this book in English only after I felt assured that its tone is correct and the book is demanded by the audience. More than 1500 copies of two Russian editions have already been sold, and this circulation an be regarded as a success for a scientific book. I believe that the English version of the book will be even in greater demand because it is extended and updated to include further development of nanoplasmonics.

Vasily Klimov July 2014

Acknowledgments

First of all, I want to thank the staff of Pan Stanford Publishing who patiently worked on my manuscript for several years. I wish to express my sincere gratitude to my wife, Mrs. Irina Klimova, who has been a constant source of inspiration, providing support and encouragement for this project in spite of her own very busy professional schedule.

I also would like to extend my thanks to Mrs. Anna Sharonova, who has allowed me to make clear a lot of intricate places in the manuscript from the linguistic point of view during translation from the Russian language.

I would like to acknowledge my PhD students Ilya Zabkov, Ilya Treshin, and Andrey Pavlov for proofreading the text and for preparing some fascinating illustrations.

Finally, I am deeply grateful to the famous physicist Vladilen Stepanovich Letokhov (1939–2009), who, many years ago, drew my attention to new areas of science that did not exist at that time nano-optics and nanoplasmonics.

> Vasily Klimov July 2014