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Preface

Emerging nanocomposite materials in the form of polymer-based

nanocomposites or metallic ultrafine-grained (UFG) alloys have

shown tremendous increase in strength and ductility and have

gained popularity in academia because of improved mechanical,

thermal, and electrical properties. In the last few years, vast amounts

of nanomaterials have been manufactured and used for commercial

and military applications as improved advanced products with supe-

rior properties. The applications include (i) thermoset composites

with an improved nano-inserted matrix or improved interphase,

(ii) thermoplastic composites with long and short chopped fiber

insertions, (iii) novel propellant formulations with nanoparticulate

insertion, (iv) adhesive coating of individual graphite microfibers

with a continuous, highly conductive metal layer, and (v) ultrafine-

grained (UFG) alloys for potential armor and structural applications.

Complex parts and superior joint structural performance can be

obtained by improvements in interlaminar strength properties

and matrix-dominated properties such as delamination, transverse

tensile (TT), and in-plane shear.

Problems that adversely reduce the properties of nanocompos-

ites are nonuniform distributions of particles inside the matrix,

void shapes/sizes, bonding of nanoparticles with matrix, and the

distribution and architecture of conventional fibers and nanofibers.

The classes of nanocomposites considered are single-walled

nanotubes (SWNTs), multi-walled nanotubes (MWNTs), platelets

in epoxy short fibers, and spherical inclusions in polymer matrix

used in (i) glass/epoxy/silica nanoparticles, (ii) talc platelets in

polypropylene, (iii) alumina short fibers in aluminum matrix, (iv)

spherical silica inclusions in polymer matrix, and (v) mica platelets

in epoxy.
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xx Preface

The work in this book addresses

(a) evaluation of mechanical properties of different classes of

nanocomposites—the properties being determined by physical

laboratory test—and the ability to perform post-test evaluation

to determine the test outliers

(b) evaluation of emerging predictive methods such as molecular

dynamics (MD), and nanomechanics (NM) in generating me-

chanical properties

(c) validation of multiscale multiphysics material characterization

and qualification methodology and software

(d) generation of additional properties by risk mitigation strategy

where test data are not available or are hard to obtain; examples

are A-B basis allowables that account for the uncertainties in

materials or tests

(e) performance of trade studies analytically to determine the

parameters of nanocomposites required to achieve an optimum

performance under service loading

Emerging computational models on multiscale multiphysics

from an industry perspective are not mature enough to predict

material performance, assess risk mitigation, and enable structural

certification. These codes are basically utilized as test dupli-

cation procedures rather than as test prediction methodology.

Therefore, new and emerging nano-insertion materials with “as-

built/as-is” characteristics must be characterized for (i) effect of

defects (i.e., void shape/size, nanofiber waviness/brush effect), (ii)

damage evolution process and fracture characteristics in service,

including the aging and end-of-life properties, and (iii) design

characteristics (i.e., nanofiber volume fraction, thickness, aspect

ratio. and interphase thickness). In this regard, researchers use

quantum mechanics, molecular dynamics (MD), nanomechanics,

and finite element (FEM) to predict and design nanomaterials.

MD simulation is one of the most accurate methods among these,

but it cannot be used in solving problems in large length-scales

because of its computational inefficiencies. On the other hand, finite

element simulation with homogenized properties has been used

successfully in modeling large length-scale problems, but it cannot

accurately capture phenomena present at smaller length-scales.
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Preface xxi

Micromechanical methods, which are based on the work of Eshelby,

are among the modeling approaches that fall in between these two

approaches having the capability to capture phenomena relatively in

small scales as well as being computationally efficient enough to be

used in large-scale problems.

These codes are challenged by complexities of nanomaterials:

(i) MD does not provide accurate prediction of bulk properties, and

(ii) FEM uses homogenization and approximation technique, where

homogenization/scale-up resolution need validation and damage

accumulation/failure mechanism is not fully characterized.

This book focuses on obtaining valid mechanical properties

of nanocomposite materials by accurate prediction and observed

physical tests, as well as by evaluation of test anomalies of advanced

multiscale nanocomposites containing nanoparticles of different

shapes, such as chopped fiber, spherical, and platelet, in polymeric,

ceramic, and metallic materials. The prediction capability covers

delamination, fracture toughness, impact resistance, conductivity,

and fire resistance of nanocomposites. The methodology employs

a high-fidelity procedure that utilizes (i) molecular dynamics to

predict nanocomposite bulk properties; (ii) constituent material

characterization and qualification to predict the effect of interfacial

strength on nanocomposite strength and stiffness, and conductiv-

ity; (iii) durability and damage tolerance (D&DT) by multiscale

multiphysics progressive failure analysis (PFA) and finite element

method (FEM) to simulate the carbon nanotube (CNT) pull-out

test and calibration with limited average test data available in

literature; and (iv) time-dependent reliability, which combines PFA

with probabilistic analysis to virtually simulate the scatter in the test

data and to consider the scatter in the simulated data by introducing

variations in the aspect ratio (length/diameter), waviness, void,

fiber volume ratio of the CNT, strength interface, and matrix. Using

the proposed approach, a good correlation between the simulation

and experimental data is established. The use of the above-

mentioned algorithms will result in improving nanocomposite

delamination, fracture toughness, fatigue and longevity, impact

resistance, conductivity, and fire resistance.

Frank Abdi
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