


# Cancer Genetics and Genomics for Personalized Medicine

edited by II-Jin Kim





Cancer Genetics and Genomics for Personalized Medicine

## Cancer Genetics and Genomics for Personalized Medicine

edited by

**II-Jin Kim** 

#### Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

#### **British Library Cataloguing-in-Publication Data**

A catalogue record for this book is available from the British Library.

#### Cancer Genetics and Genomics for Personalized Medicine

Copyright © 2017 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4669-87-0 (Hardcover) ISBN 978-1-315-36476-6 (eBook)

Printed in the USA

### **Contents**

| Pι | eface                                              | 2                                           | xiii |  |  |  |
|----|----------------------------------------------------|---------------------------------------------|------|--|--|--|
| 1  | Personalized Medicine for Cancer: Introduction and |                                             |      |  |  |  |
|    | Ove                                                | Overview of the Book                        |      |  |  |  |
|    | Il-Jir                                             | n Kim and David Jablons                     |      |  |  |  |
|    | 1.1                                                | Changing the Treatment Paradigm for Cancer  | 1    |  |  |  |
|    | 1.2                                                | Companion Diagnostics and New Sequencing    |      |  |  |  |
|    |                                                    | Technologies                                | 3    |  |  |  |
|    | 1.3                                                | Early Detection of Cancer and Tumor         |      |  |  |  |
|    |                                                    | Recurrence Monitoring: Circulating Tumor    |      |  |  |  |
|    |                                                    | Cell (CTC) and Circulating Tumor DNA        |      |  |  |  |
|    |                                                    | (ctDNA)                                     | 5    |  |  |  |
|    | 1.4                                                | Cancer Animal (Mouse) Models and            |      |  |  |  |
|    |                                                    | Microenvironment for Personalized Medicine  | 6    |  |  |  |
|    | 1.5                                                | Personalized Immunotherapy                  | 7    |  |  |  |
|    | 1.6                                                | Hereditary Cancer Syndromes and Potential   |      |  |  |  |
|    |                                                    | Treatment                                   | 7    |  |  |  |
|    | 1.7                                                | Future Directions                           | 8    |  |  |  |
| 2  | Pers                                               | onalized Medicine in Lung Cancer            | 15   |  |  |  |
|    | Dan                                                | iela Morales-Espinosa, Silvia García-Román, |      |  |  |  |
|    | and                                                | Rafael Rosell                               |      |  |  |  |
|    | 2.1                                                | Introduction                                | 15   |  |  |  |
|    |                                                    | 2.1.1 Predictive Models                     | 16   |  |  |  |
|    |                                                    | 2.1.2 The Molecular Diagnostics Approach    | 17   |  |  |  |
|    |                                                    | 2.1.3 Conventional Chemotherapy             | 19   |  |  |  |
|    |                                                    | 2.1.3.1 Cisplatin                           | 19   |  |  |  |
|    |                                                    | 2.1.3.2 Pemetrexed                          | 20   |  |  |  |

|   |     |          | 2.1.3.3     | Gemcitabine                              | 21 |
|---|-----|----------|-------------|------------------------------------------|----|
|   |     |          | 2.1.3.4     | Taxanes                                  | 22 |
|   | 2.2 | Genet    | ic Altera   | tions and New Potential Targets          | 23 |
|   |     | 2.2.1    | Recepto     | or Tyrosine Kinases                      | 24 |
|   |     |          | 2.2.1.1     | EGFR inhibitors (first and second        |    |
|   |     |          |             | generation)                              | 24 |
|   |     |          | 2.2.1.2     | ALK rearrangement (first and second      |    |
|   |     |          |             | generation)                              | 25 |
|   |     |          | 2.2.1.3     |                                          | 26 |
|   |     |          |             | etic Factors                             | 27 |
|   |     | 2.2.3    | Transcr     | ription Factors                          | 30 |
|   |     | 2.2.4    | Repurp      | osing Drugs                              | 32 |
|   | 2.3 | Concl    | usions      |                                          | 33 |
| 3 |     |          |             | onalized Medicine in Liver Cancer        | 39 |
|   |     |          |             | Seog Lee                                 |    |
|   | 3.1 |          | duction     |                                          | 39 |
|   |     |          | -           | iology of Liver Cancer                   | 39 |
|   |     |          |             | Characteristics of Liver Cancer          | 40 |
|   | 3.2 | -        |             | zed Medicine is Important in Patients    |    |
|   |     |          | Liver Can   |                                          | 41 |
|   | 3.3 |          |             | Results of Genomic Profiling of Liver    |    |
|   |     | Cance    |             |                                          | 42 |
|   |     |          | -           | rative Genomic Hybridization (CGH)       | 42 |
|   |     | 3.3.2    |             | ray-Based Technology                     | 43 |
|   |     |          |             | eneration Sequencing                     | 44 |
|   |     |          | 0           | mics: Integration of Multiple -omic Data | 45 |
|   | 3.4 | Concl    | usion       |                                          | 47 |
| 4 | Арр | lication | ns of Circu | ulating DNA Analysis in Personalized     |    |
|   | Med | licine   |             |                                          | 53 |
|   | Dan | a W. Y.  | Tsui and I  | Muhammed Murtaza                         |    |
|   | 4.1 | Biolog   | gical Cha   | racteristics of Circulating DNA          | 53 |
|   |     | 4.1.1    | History     |                                          | 53 |
|   |     | 4.1.2    | Biologic    | cal Characteristics                      | 54 |
|   | 4.2 | Molec    | ular Met    | hods for Circulating DNA Analysis        | 55 |
|   | 4.3 | Circul   | ating Tu    | mor-Specific DNA in Cancer Patients      | 58 |

|   |     | 4.3.1  | Monito    | ring of Tumor Burden and Disease          |    |
|---|-----|--------|-----------|-------------------------------------------|----|
|   |     |        | Respon    | se                                        | 58 |
|   |     | 4.3.2  | Molecu    | lar Stratification for Targeted Therapies | 59 |
|   |     | 4.3.3  | Analysi   | s of Clonal Evolution and Therapeutic     |    |
|   |     |        | Resista   | nce                                       | 60 |
|   | 4.4 | Circul | lating DN | IA for Noninvasive Prenatal Diagnostics   | 60 |
|   |     |        |           | asive Diagnosis of Fetal Genetic          |    |
|   |     |        | Disease   | es ·                                      | 61 |
|   |     | 4.4.2  | Noninv    | asive Prenatal Diagnosis of               |    |
|   |     |        | Down-S    | Syndrome                                  | 61 |
|   |     | 4.4.3  | Noninv    | asive Sequencing of the Fetal Genome      | 62 |
|   |     | 4.4.4  | Clinical  | Implementation of Prenatal Diagnosis      | 63 |
|   | 4.5 | Circul | lating DN | IA in Transplant Recipients               | 63 |
|   | 4.6 | Pre-a  | nalytical | Considerations                            | 63 |
|   | 4.7 | Concl  | usion     |                                           | 65 |
|   |     |        |           |                                           |    |
| 5 |     | _      |           | ells and Personalized Medicine            | 77 |
|   |     |        |           | sus M. Magbanua, Marc R. Jabon,           |    |
|   |     | John W |           |                                           |    |
|   | 5.1 |        |           | d Circulating Tumor Cells                 | 77 |
|   |     |        |           | tastatic Process                          | 78 |
|   |     | 5.1.2  |           | ting Tumor Cells                          | 79 |
|   | 5.2 |        |           | nd Detection of CTCs                      | 79 |
|   |     |        | Enrichr   |                                           | 80 |
|   |     | 5.2.2  | Detection | <del></del>                               | 82 |
|   |     |        | 5.2.2.1   | 7 1 8 11                                  |    |
|   |     |        |           | Immunocytochemistry (ICC)                 | 82 |
|   |     |        | 5.2.2.2   | rr                                        |    |
|   |     |        |           | reverse transcription polymerase          |    |
|   |     |        |           | chain reaction (RT-PCR)                   | 84 |
|   | 5.3 |        | -         | ations of CTC Detection and               |    |
|   |     | Enum   | eration   |                                           | 84 |
|   |     | 5.3.1  | Breast (  | Cancer                                    | 85 |
|   |     | 5.3.2  | Prostat   | e Cancer                                  | 86 |
|   |     | 5.3.3  | Colorec   | tal Cancer                                | 87 |
|   |     |        | Lung Ca   |                                           | 88 |
|   | 5.4 | Molec  | cular Cha | racterization of CTC and Personalized     |    |
|   |     | Medio  | cine      |                                           | 89 |

|   |      | 5.4.1   | Tumor l      | Biomarkers in CTCs                   | 89  |
|---|------|---------|--------------|--------------------------------------|-----|
|   |      | 5.4.2   | Molecul      | ar Analysis of CTCs                  | 90  |
|   |      | 5.4.3   | Clinical     | Trials for Personalized Medicine     | 90  |
|   | 5.5  | Sumn    | nary         |                                      | 92  |
| 6 | Mou  | use Mo  | dels in Pe   | rsonalized Cancer Medicine           | 103 |
|   | M. E | . Beau  | lieu, T. Jau | iset, D. Massó-Vallés, L. Soucek,    |     |
|   | and  | J. R. W | hitfield     |                                      |     |
|   | 6.1  | Trans   | genic Mo     | use Models: From Understanding the   |     |
|   |      | Molec   | ular Basi    | s of Tumorigenesis to the Refinement |     |
|   |      | of Dru  | ıg Design    | Targeting Specific Mutated/Altered   |     |
|   |      | Prote   | ins          |                                      | 104 |
|   |      | 6.1.1   | Prenata      | l GEMMs                              | 105 |
|   |      |         | 6.1.1.1      | Tissue-specific promoters and CRE    |     |
|   |      |         |              | recombinase technology               | 105 |
|   |      | 6.1.2   |              | al GEMMS                             | 107 |
|   |      |         | 6.1.2.1      | Irreversible models: Inducible CRE   |     |
|   |      |         |              | recombination                        | 107 |
|   |      |         | 6.1.2.2      | Switchable models: The tetracycline  |     |
|   |      |         |              | inducible system                     | 108 |
|   |      |         |              | The estrogen-receptor system         | 110 |
|   |      | 6.1.3   |              | : Benefits and Drawbacks             | 111 |
|   | 6.2  |         |              | d Xenograft (PDX): Tumor             |     |
|   |      |         |              | and the Exploration of Avatars as    |     |
|   |      | Predi   | ctors of T   | reatment Outcome                     | 112 |
|   |      | 6.2.1   |              | Material                             | 113 |
|   |      |         |              | Implantation                         | 115 |
|   |      |         | •            | nt Mouse Strains                     | 116 |
|   |      |         |              | Personalized Medicine                | 117 |
|   |      |         |              | imitations and Value                 | 121 |
|   | 6.3  |         |              | ouse Models: Bringing the Major      |     |
|   |      |         |              | nto the Biological Game              | 122 |
|   |      | 6.3.1   |              | ed for Better Models                 | 122 |
|   |      |         |              | izing" the Mouse Models              | 123 |
|   |      | 6.3.3   |              | antation of Hematopoietic Stem Cells | 124 |
|   |      | 6.3.4   |              | antation of Peripheral Blood         |     |
|   |      |         |              | ıclear Cells                         | 125 |
|   |      | 6.3.5   | Local "F     | Iumanization"                        | 125 |

|   |                                                    |         | Overcoming Limitations of the Model            | 126 |  |  |
|---|----------------------------------------------------|---------|------------------------------------------------|-----|--|--|
|   |                                                    |         | Success Stories                                | 126 |  |  |
|   |                                                    |         | Humanized Mouse Models: Future Perspectives    | 128 |  |  |
|   | 6.4                                                | Discu   | ssion and Perspectives                         | 128 |  |  |
| 7 | Tum                                                | or Mic  | roenvironment, Therapeutic Resistance, and     |     |  |  |
|   | Personalized Medicine                              |         |                                                |     |  |  |
|   | Yu S                                               | un      |                                                |     |  |  |
|   | 7.1                                                |         | Orchestrates Disease Progression and           |     |  |  |
|   |                                                    |         | nates Therapeutic Response                     | 146 |  |  |
|   |                                                    | 7.1.1   | Cancer-Associated Fibroblasts                  | 147 |  |  |
|   |                                                    | 7.1.2   | Vasculature System                             | 148 |  |  |
|   |                                                    | 7.1.3   | Extracellular Matrix                           | 148 |  |  |
|   |                                                    | 7.1.4   | Immune Cells                                   | 149 |  |  |
|   |                                                    |         | TME-Derived Exosomes                           | 151 |  |  |
|   | 7.2                                                | Treati  | ment-Activated TME Confers Acquired            |     |  |  |
|   |                                                    | Resist  | tance and Creates Barriers to a Clinical       |     |  |  |
|   |                                                    | Cure    |                                                | 154 |  |  |
|   |                                                    | 7.2.1   | Damage Responses of the TME Offset             |     |  |  |
|   |                                                    |         | Therapy-Enforced Tumor Regression              | 154 |  |  |
|   |                                                    | 7.2.2   | Modified Differentiation and Immune            |     |  |  |
|   |                                                    |         | Responses in the TME Decrease                  |     |  |  |
|   |                                                    |         | Therapeutic Outcomes                           | 157 |  |  |
|   | 7.3                                                | Overc   | coming Challenges of Personalized Cancer       |     |  |  |
|   |                                                    | Thera   | py Requires Translation of Biological Insights |     |  |  |
|   |                                                    | into tl | he Clinic                                      | 158 |  |  |
|   |                                                    | 7.3.1   | Implications of Personalized Cancer Therapy    |     |  |  |
|   |                                                    |         | in an Era of Precision Medicine                | 158 |  |  |
|   |                                                    | 7.3.2   | Significance of Preclinical Studies in         |     |  |  |
|   |                                                    |         | Promoting PCT Advancement                      | 163 |  |  |
|   | 7.4                                                | Concl   | uding Remarks and Future Outlooks              | 165 |  |  |
| 8 | Pers                                               | onalize | ed Immune Therapy                              | 175 |  |  |
|   | Joost Hegmans, Lysanne Lievense, and Joachim Aerts |         |                                                |     |  |  |
|   | 8.1                                                | Immu    | inotherapy                                     | 176 |  |  |
|   | 8.2                                                | Immu    | ne Cell Involvement during Carcinogenesis      | 177 |  |  |
|   | 8.3                                                | Conte   | xt-Specific Nature of Immune Cells within      |     |  |  |
|   |                                                    | Tumo    | ors                                            | 177 |  |  |

|   | 8.4  | Types    | s of Immi  | unotherapeutic Approaches               | 179 |
|---|------|----------|------------|-----------------------------------------|-----|
|   |      | 8.4.1    | Biologic   | cal Response Modifiers                  | 180 |
|   |      | 8.4.2    | Monocl     | onal Antibodies                         | 180 |
|   |      | 8.4.3    | Tumor      | Vaccines                                | 181 |
|   |      | 8.4.4    | Cellular   | · Immunotherapy                         | 181 |
|   |      |          | 8.4.4.1    | Dendritic cell-based immunotherapy      | 182 |
|   |      |          | 8.4.4.2    | Adoptive genetically modified and/or    |     |
|   |      |          |            | expanded T-cell therapy                 | 182 |
|   |      |          | 8.4.4.3    | Adoptive natural killer (T) cells'      |     |
|   |      |          |            | transfer                                | 183 |
|   | 8.5  | The F    | uture of   | Personalized Medicine                   | 183 |
| 9 | Нур  | ertherr  | mic Intra  | peritoneal Chemotherapy (HIPEC) for     |     |
|   | Peri | toneal   | Malignar   | ncies                                   | 189 |
|   | G. E | . Bates, | P. Kim, C  | . M. DeRosa, L. Petrukhin, Y. Bressler, |     |
|   | and  | R. N. To | aub        |                                         |     |
|   | 9.1  | What     | Is Hyper   | thermic Intraperitoneal Chemotherapy    |     |
|   |      | (HIPE    | EC)?       |                                         | 189 |
|   | 9.2  | The R    | ole of He  | eat as a Cytotoxic Agent                | 191 |
|   | 9.3  | The R    | tole of He | eat Shock Proteins in HIPEC             |     |
|   |      | Treat    | ment       |                                         | 192 |
|   | 9.4  | Chem     | otherape   | eutic Agents Used for HIPEC             | 193 |
|   |      | 9.4.1    |            | n: [cis-diamminedichloroplatinum(II)    |     |
|   |      |          | (CDDP)     | ] (Platinol and Platinol-AQ)            | 193 |
|   |      | 9.4.2    | Doxoru     | bicin: (7S,9S)-7-[(2R,4S,5S,6S)-        |     |
|   |      |          | 4-amin     | o-5-hydroxy-6-methyloxan-2-yl]oxy-      |     |
|   |      |          | 6,9,11-t   | rihydroxy-9-(2-hydroxyacetyl)-4-        |     |
|   |      |          | methox     | y-8,10-dihydro-7H-tetracene-5,          |     |
|   |      |          | 12-dion    | ne)                                     | 194 |
|   |      | 9.4.3    | Carbop     | latin: (cis-diammine-1,                 |     |
|   |      |          | 1-cyclo    | butane dicarboxylate                    |     |
|   |      |          | platinu    | m II, CBDCA, JM8)                       | 195 |
|   |      | 9.4.4    | Melpha     | lan: 4-[bis(chloroethyl)amino]          |     |
|   |      |          | phenyla    |                                         | 195 |
|   | 9.5  | Quali    | ty-of-Life | Impact of HIPEC Treatment               | 196 |
|   | 9.6  | The F    | uture of   | HIPEC: The Need for                     |     |
|   |      | Perso    | nalizatio  | n                                       | 197 |

| 10 |        | nalized Medicine in He<br>garwal and Vivek Sub | ereditary Cancer Syndromes | 199 |
|----|--------|------------------------------------------------|----------------------------|-----|
|    | 10.1   | Introduction                                   |                            | 199 |
|    | 10.2   | Neurofibromatosis                              | Type 1                     | 201 |
|    | 10.3   | Neurofibromatosis                              |                            | 203 |
|    | 10.4   | Gorlin Syndrome                                |                            | 204 |
|    | 10.5   | Hereditary Breast a                            | nd Ovarian Cancer          |     |
|    |        | Syndrome                                       |                            | 205 |
|    | 10.6   | Lynch Syndrome                                 |                            | 208 |
|    | 10.7   | Familial Adenomate                             | ous Polyposis              | 208 |
|    | 10.8   | Fanconi Anemia                                 |                            | 210 |
|    | 10.9   | Inherited Medullary                            | Thyroid Cancer             | 211 |
|    | 10.10  | <b>Tuberous Sclerosis</b>                      | Complex (TSC)              | 212 |
|    | 10.11  | RASopathies                                    |                            | 213 |
|    | 10.12  | Von Hippel-Lindau                              | Disease                    | 214 |
|    |        | 10.12.1 Tyrosine I                             | Kinase Inhibitors (TKIs)   | 215 |
|    |        | 10.12.2 mTOR Inh                               | ibitors                    | 216 |
|    |        | 10.12.3 Anti-VEGF                              | Receptor Antibodies        | 216 |
|    |        | 10.12.4 Other Age                              | nts Including Histone      |     |
|    |        | Deacetyla                                      | ses (HDAC) Inhibitor       | 217 |
|    |        | Cowden Syndrome                                |                            | 217 |
|    | 10.14  | <b>Proteus and Proteu</b>                      | s-Like Syndrome            | 218 |
|    | 10.15  | Li-Fraumeni Syndr                              | ome                        | 218 |
|    | 10.16  | Conclusions                                    |                            | 219 |
| 11 | Patho  | ogy in the Era of Pers                         | onalized Medicine          | 227 |
|    | Hye Se | rung Lee                                       |                            |     |
|    | 11.1   | Why Is the Role of Pa                          | thologists in Personalized |     |
|    |        | Medicine Important?                            |                            | 228 |
|    | 11.2   | Practical Guidance fo                          | r Molecular Pathology      | 229 |
|    |        | 11.2.1 Preanalytic                             |                            | 229 |
|    |        | 11.2.2 Analytic                                |                            | 230 |
|    |        | 11.2.3 Quality Assu                            | rance                      | 232 |
|    |        | 11.2.4 Postanalytic                            |                            | 233 |
|    | 11.3   | <b>Next-Generation Seq</b>                     | uencing and the            |     |
|    |        | Pathologist                                    |                            | 234 |
|    | 11.4   | Conclusions                                    |                            | 235 |

| 12  | Micro                                           | RNAs in                            | Human Cancers                                  | 239 |  |
|-----|-------------------------------------------------|------------------------------------|------------------------------------------------|-----|--|
|     | Tae Jin Lee and Carlo M. Croce                  |                                    |                                                |     |  |
|     | 12.1                                            | Introd                             | luction                                        | 239 |  |
|     | 12.2 Biogenesis and Working Mechanism of Microl |                                    |                                                | 242 |  |
|     | 12.3                                            | 2.3 MicroRNAs as Tumor Suppressors |                                                |     |  |
|     | 12.4                                            | MiRNAs as Oncogenes                |                                                |     |  |
|     | 12.5                                            | MiRN                               | As and Epigenetics                             | 247 |  |
|     | 12.6                                            | MiRNA Signatures in Human Cancers  |                                                |     |  |
|     | 12.7                                            | Bioma                              | arker MiRNAs in Human Cancers                  | 249 |  |
|     | 12.8                                            | Circul                             | ating MiRNAs as Biomarkers of Human            |     |  |
|     |                                                 | Cance                              | rs                                             | 251 |  |
|     | 12.9                                            | Single                             | Polymorphism (SNP) in MiRNAs                   | 252 |  |
|     | 12.10                                           | MiRN                               | A and Cancer Stem Cells                        | 253 |  |
|     | 12.11                                           | Persp                              | ectives                                        | 253 |  |
| 13  | Pharmacogenomics of Tamoxifen                   |                                    |                                                |     |  |
|     | Hitoshi Zembutsu                                |                                    |                                                |     |  |
|     | 13.1                                            | What Is                            | Tamoxifen?                                     | 266 |  |
|     | 13.2                                            | Why Is                             | Pharmacogenomics of Tamoxifen                  |     |  |
|     |                                                 | Import                             | ant?                                           | 266 |  |
|     |                                                 | 13.2.1                             | Metabolic Pathway of Tamoxifen                 | 267 |  |
|     |                                                 | 13.2.2                             | CYP2D6 Genotype and Pharmacokinetics           |     |  |
|     |                                                 |                                    | of Tamoxifen                                   | 269 |  |
|     |                                                 | 13.2.3                             | CYP2D6 Genotype and Tamoxifen Efficacy         | 269 |  |
|     | 13.3                                            | The Co                             | ntroversy in Tamoxifen- <i>CYP2D6</i> Study    | 270 |  |
|     | 13.4                                            |                                    | Direction of Tamoxifen Pharmacogenomics        | 271 |  |
|     |                                                 |                                    | Pharmacogenomics for Irinotecan: <i>UGT1A1</i> | 271 |  |
|     |                                                 | 13.4.2                             | Pharmacogenetic Test of CYP2C9 and             |     |  |
|     |                                                 |                                    | VKORC1 Genotypes for Warfarin Treatment        | 272 |  |
| Ind | ex                                              |                                    |                                                | 279 |  |

#### **Preface**

On a busy morning one day, I got an email from a publisher asking for a new publication on precision and personalized medicine for cancer treatment and research. By that time, I had led several relevant projects, including the development of new next-generation sequencing (NGS) technologies and corresponding bioinformatics programs. There were surely successful and commercial products developed from these projects (which are now available in the genetic analysis market in the world), yet I was not sure if I would be able to write or edit a textbook on a big topic like personalized medicine. Previously, I only had had a chance to join two scientific books as a single-chapter contributor, but had never written or edited a whole book by myself. It seemed quite overwhelming to me at the time. However, as several months passed since I received the first email about this opportunity, I began to open my mind and be more positive towards the idea. In fact, I had been working on personalized medicine, cancer genetics, companion diagnostics, and cancer biomarker discovery for more than 15 years by then. Thus, I thought it would be good to organize and integrate all the knowledge that I have along with that which top-level scientists, researchers, and medical doctors have been gathering regarding personalized medicine in cancer. Consequently, I gladly decided to embark on this project even though I was very busy developing multiple new sequencing and genetic technologies. First, I tried to select the topics that could be the most beneficial for the people engaged in training such as graduate students, medical residents, and other highlevel professionals who are relatively unfamiliar with personalized medicine. The next thing I did was the most time-consuming and challenging work—finding the most suitable people who can write on the topic with up-to-date knowledge and information in a plain language. As a matter of fact, it took me almost an entire year to find all the world-class authors for each chapter. I really appreciate all the contributors of each chapter in this book. Without their contribution and efforts, the book could not have been published. I thank them for their patience and support because it took much longer than expected to finally get this book published. I also appreciate my good friend and colleague Pedro Mendez, who designed the cover for this book. I must say that he is the most artistic person I have ever met in my group. I also thank James Kim for his editorial assistance and sincere friendship. I thank the whole team at the UCSF Thoracic Oncology Program and CureSeq for their support and inspiration on precision medicine and companion diagnostics in developing new weapons (the world's fastest mutation screening assay) fighting cancer. Finally, I thank Stanford Chong greatly for suggesting and giving me a chance to publish this book, and Sarabjeet Garcha for all the help and communication.

I would like to offer my wholehearted gratitude to my family who supported me not only in the writing of this book but also in all my work in general. My parents, Ho-Young Kim and Yong-Soon Bang, in Korea taught me well to maintain a strong passion for my life's goals, and also to give endless love to my family. My wife, Hio Chung Kang, and my two sons, Thomas Kunhee and Benjamin Kunjune Kim, are truly the very source of all my sweat, effort, motivation, and energy behind the achievements.

We are already in the era of personalized and precision medicine for curing cancer. Technologies and methods will develop continuously and evolve rapidly. However, grasping the core concept and principles will constantly remain crucial until we finally cure cancer. I really hope this book will be helpful and informative to current and future heroes and heroines in their fight against, and the eventual conquest over, cancer.

> II-Jin Kim February 2017 San Francisco