
edited by Gilson Khang

Handbook of

Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine

Second Edition

Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine

Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine

Second Edition

edited by Gilson Khang

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine (2nd Edition)

Copyright © 2017 by Pan Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center; Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4745-12-3 (Hardcover) ISBN 978-1-315-36469-8 (eBook)

Printed in the USA

I would like to dedicate this handbook to my wife, Isabella Seong Hee Koh, my children, Jerome Taeuk and Daniel Taehoon, and my mother.

Contents

				xxxvii xxxix
PARTI I	NTRODU	CTION		1
Reger			acturing Methods for Scaffold in Update 2015	3
1.1	Introd	uction		4
1.1			Regenerative Medicine	1
1.2		ssue Engi	0	11
	1.2.1	0	ance of Scaffold Matrices in	
		-	rative Medicine and Tissue	
		Enginee		11
	1.2.2	Biocera	mic Scaffolds	11
		1.2.2.1	Calcuim phosphate	14
		1.2.2.2	Tricalcuim phosphate (TCP)	15
		1.2.2.3	Hydroxyapatite	15
		1.2.2.4	Bioglass	15
		1.2.2.5	Demineralized bone particle	16
	1.2.3	5	ic Polymers	17
		1.2.3.1		18
		1.2.3.2	5 5	20
		1.2.3.3	Poly(propylene fumarate)	20
		1.2.3.4	PEO and its derivatives	21
		1.2.3.5	Poly(vinyl alcohol)	22
		1.2.3.6	Oxalate-based polyesters	
			(polyoxalate)	22
		1.2.3.7	Polyphosphazene	23
		1.2.3.8	Biodegradable polyurethane	23
	104	1.2.3.9	Other synthetic polymers	24
	1.2.4		Polymers	25
		1.2.4.1	Fibrin	25
		1.2.4.2	Collagen	26
		1.2.4.3	Alginate	27

			1.2.4.4	Small intestine submucosa	28
			1.2.4.5	Silk	29
			1.2.4.6	Hyaluronan	29
			1.2.4.7	Chitosan	30
			1.2.4.8	Agarose	31
			1.2.4.9	Acellular dermis	31
			1.2.4.10	Polyhydroxyalkanoates	32
			1.2.4.11	Other natural polymers	32
		1.2.5	Bioactiv	e Molecules Release System	
			for Rege	enerative Medicine and Tissue	
			Enginee	8	33
	1.3	Scaffol		tion and Characterization	36
		1.3.1	Fabricat	ion Methods of Scaffolds	36
			1.3.1.1	Electrospinning method	36
			1.3.1.2	PGA nonwoven sheet	37
			1.3.1.3	Porogen leaching methods	37
			1.3.1.4	Gas foaming method	38
			1.3.1.5	Phase separation method	38
			1.3.1.6	Rapid prototyping	39
			1.3.1.7	Injectable gel method	40
		1.3.2	-	chemical Characterization	
			of Scaffo		40
		1.3.3		tion Method for Scaffolds	41
	1.4	Conclu	ding Rem	arks and Future Directions	43
PAR	T II	CERAMIC	AND ME	TAL SCAFFOLDS	57
2.	Bion	nineralized	Matrices	as Intelligent Scaffolds for	
	Bon	e Tissue Re	generatio	n	59
	Heer	min Kang,	Yu-Ru V. Sl	hih, Vikram Rao,	
	and	Shyni Varg	hese		
	2.1	Introdu	uction		59
		2.1.1	Bone Ti	ssue: A Mineralized	
			Hierarch	nical Living Structure	60
		2.1.2	Minerali	ized Biomaterials for Bone	
			Tissue F	Repair	62
	2.2	CaP Bio	omaterials	5	63
	2.3	CaP-Ba	sed Biom	aterial-Assisted Osteogenic	
		Differe	ntiation o	of Stem Cells	65

	2.4	CaP Matrices for Bone Tissue Engineering and Repair	67
	2.5	CaP Mineral-Based Matrices as a Delivery	07
	2.3	Vehicle for Growth Factors and Genes	69
	2.6	CaP-Assisted Stem Cell Osteogenesis and	0)
	2.0	Bone Tissue Regeneration: Mechanistic Insights	70
	2.7	Conclusion and Future Perspectives	70
3.	Biocera	amic and Composite Scaffolds in Drug Delivery	
		one Tissue Engineering	85
	Willi P	aul and Chandra P. Sharma	
	3.1	Introduction	86
	3.2	Bioceramics	87
	3.3	Nanotechnology in Bioceramics	89
	3.4	Nanoceramics in Drug Delivery	93
	3.5	Bone Tissue Engineering	96
	3.6	Research Perspective	98
	3.7	Basic Questions in Bone Tissue Engineering	101
	3.8	Conclusion	104
4.	Recent	Development in Materials Innovation in	
	Bone T	issue Regeneration	111
	Swapa	n Kumar Sarakar and Byong-Taek Lee	
	4.1	Overview	111
	4.2	Materials' Innovation	117
		4.2.1 Bioceramics	117
		4.2.2 Glass and Glass Ceramics	120
		4.2.3 Biopolymers and Hydrogels	123
	4.3	Microstructure and Morphology Optimization	
		of Bioceramic-Based Bone Substitutes	126
	4.4	Current Challenges and Future Directions	
		in Bone Substitute Research	127
	4.5	Conclusions	128
5.	Carbor	nate Apatite Scaffolds for Regenerative Medicine	141
	Kunio I	Ishikawa	
	5.1	Introduction	141
	5.2	Fabrication of Carbonate Apatite by	
		Compositional Transformation Based on	
		Dissolution-Precipitation Reaction Using a	
		Precursor	143

	5.3	Cell and	Tissue Response to Carbonate Apatite	146
	5.4	Porous	Carbonate Apatite	150
	5.5	Conclus	ion	158
6.	Mg-Bas	ed Biode	egradable Metals for Scaffolds	161
	Yang Li	iu and Yu	ıfeng Zheng	
	6.1	Introdu	ction	161
		6.1.1	History of Mg-Based Metals for	
			Scaffolds	161
		6.1.2	Impact Factors on Scaffolds	163
			6.1.2.1 Structure design	163
			6.1.2.2 Surface design	163
	6.2	Mg-Bas	ed Biodegradable Metals for Bone	
		Scaffold	ls	164
		6.2.1	Overview	164
		6.2.2	Compact Mg-Based Biodegradable	
			Metals as Bone Scaffolds	165
		6.2.3	Porous Mg-Based Alloys as Bone	
			Scaffolds	168
		6.2.4	Mg-Based Composite as Bone Scaffolds	172
	6.3	-	ed Biodegradable Metals for Blood	
			caffolds/Stents	173
		6.3.1	Overview	173
		6.3.2	Bare Mg-Based Biodegradable	
			Metal Stent	176
		6.3.3	Drug-Eluting Mg-Based	
			Biodegradable Metal Stent	182
	6.4	Conclud	ling Remarks	185
PART	- III IN	ITELLIGI	ENT HYDROGELS	197
7.	Functio	nal DNA	Building Blocks and Their	
	Hydrog	el Scaffo	lds for Biomedical Application	199
	Seung	Won Shir	n, Kyung Soo Park, and Soong Ho Um	
	7.1	Overvie	W	199
	7.2	DNA Na	nobuilding Blocks	202
	7.3	DNA Hy	drogels	204
		7.3.1	Characteristics of DNA Hydrogels	204
	7.4	Functio	nalized DNA Hydrogels	206
	7.5	Protein	-Producing DNA Hydrogels	208

		7.5.1	Artificia	al Nucleus System Based on	
			DNA Hy	<i>r</i> drogels	209
	7.6	Conclus	sion		211
8.	Recent	Progres	s of Intell	igent Hydrogels for Tissue	
	Engine	ering			217
	S. V. Be	rwin Sin	gh, Dong	-Kwon Lim, and Gilson Khang	
	8.1	Introdu	iction		217
	8.2	History	of Hydro	ogels	218
	8.3	Proper	ties of Hy	drogel Scaffolds for	
		Success	sful Tissu	le Engineering	219
	8.4	Classifi	cation of	Hydrogels	220
		8.4.1	Innovat	ive Smart Hydrogels in	
			Tissue l	Engineering	221
			8.4.1.1	Temperature-sensitive	
				hydrogels in tissue	
				engineering	224
			8.4.1.2		
				tissue engineering	225
			8.4.1.3	pH-/temperature-sensitive	
				hydrogels in tissue	
				engineering	227
			8.4.1.4	Biomolecule-sensitive	
				hydrogels and photosensitive	
				hydrogels in tissue	
			.	engineering	228
			8.4.1.5	Ion-sensitive hydrogels in	
			m 1 r	tissue engineering	228
		8.4.2		Dimensional Bioprinting	229
			8.4.2.1	Three-dimensional	220
			0422	bioprinting modus operandi	230
			8.4.2.2	Three-dimensional	220
			8.4.2.3	bioprinting in application	230 231
	8.5	Conclus		Skin cell gun	231
	8.5	Conclus	sions		232
9.	Polyan	ionic Hy	drogels as	s Biomaterials for Tissue	
	Engine	-			243
	Hyuck	Joon Kw	on		
	9.1	Overvie	ew		243

xii	Contents
xii	Contents

	9.2	Propert	ties of Polyanionic Hydrogels	244
		9.2.1	Electrical Properties	244
		9.2.2	Electromechanical and	
			Mechanoelectrical Properties	245
		9.2.3	Polyanionic Gel as a Matrix for	
			Protein Diffusion	246
		9.2.4	Friction Reduction Effect of	
			Polyanionic Gel	247
		9.2.5	Tough Polyanionic Gel with an	
			Interpenetrating Structure	248
	9.3	Polyani	onic Hydrogels for Replacement of	
		Biotiss	ues	249
		9.3.1	Artificial Muscle	249
		9.3.2	Artificial Cartilage	251
	9.4	Polyani	onic Hydrogels for Tissue Regeneration	252
		9.4.1	Muscle Regeneration	252
		9.4.2	Cartilage Regeneration	253
	9.5	Conclus	sions	256
10.	Hyalur	onic Acid	I–Based Hydrogel as a Scaffold for	
	Tissue	Enginee	ring	263
	Insup l	Noh and	Sumi Bang	
	10.1	Introdu	iction	264
	10.2	Charact	teristics of Hyaluronic Acid in Tissue	
		.	aning	264
		Engine	ering	204
	10.3	0	ivatives	264 266
	10.3	HA Der	6	
	10.3	HA Der 10.3.1	ivatives	266
	10.3	HA Der 10.3.1 10.3.2	ivatives Ester Derivatives	266 267
	10.3	HA Der 10.3.1 10.3.2 10.3.3	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂)	266 267 268
	10.3	HA Der 10.3.1 10.3.2 10.3.3 10.3.4	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH)	266 267 268 268
	10.3	HA Der 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH) Sulfation	266 267 268 268 268
		HA Der 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH) Sulfation Acryloyl Chloride	266 267 268 268 268 268 269
		HA Der 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Fabrica	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH) Sulfation Acryloyl Chloride tion of Hyaluronic Acid Hydrogels	266 267 268 268 268 268 269
		HA Der 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Fabrica	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH) Sulfation Acryloyl Chloride tion of Hyaluronic Acid Hydrogels Hydrogel Formation by Direct	266 267 268 268 268 268 269 269
		HA Der 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Fabrica	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH) Sulfation Acryloyl Chloride tion of Hyaluronic Acid Hydrogels Hydrogel Formation by Direct Crosslinking Methods	266 267 268 268 268 269 269 269
		HA Der 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Fabrica	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH) Sulfation Acryloyl Chloride tion of Hyaluronic Acid Hydrogels Hydrogel Formation by Direct Crosslinking Methods 10.4.1.1 Diepoxy crosslinking method	266 267 268 268 268 269 269 269
		HA Der 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 Fabrica	ivatives Ester Derivatives Carbodiimide (R ₁ N=C=NR ₂) Sulfydrylation (HA-SH) Sulfation Acryloyl Chloride tion of Hyaluronic Acid Hydrogels Hydrogel Formation by Direct Crosslinking Methods 10.4.1.1 Diepoxy crosslinking method 10.4.1.2 Bifunctional amines as	266 267 268 268 268 269 269 269 269

		10.4.1.4 In situ HA hydrogels	272
		10.4.1.5 HA-aldehyde hydrogels	278
		10.4.1.6 Michael-type addition	
		reaction method	281
		10.4.1.7 Azaide	282
	10.5	Hyaluronic Acid–Based Hybrid Hydrogels	283
		10.5.1 HA-Collagen/Peptide Hydrogels	283
		10.5.2 HA–Natural Polymer Hydrogels	285
		10.5.3 HA-Synthetic Polymer Hydrogels	286
	10.6	Conclusions and Outlook	287
11.	Biologi	ially Triggered Injectable Hydrogels as	
	Intellig	ent Scaffolds	293
	Yoon K	i Joung, Kyung Min Park, and Ki Dong Park	
	11.1	Introduction	294
	11.2	Injectable Hydrogels as a Regenerative	
		Scaffold	295
	11.3	Enzyme-Triggered Hydrogels	296
		11.3.1 HRP-Catalyzed Systems	298
		11.3.2 TGase-Catalyzed Systems	301
		11.3.3 Other Enzyme-Catalyzed Systems	303
	11.4	Conclusions and Outlook	304
12.	-	mpatible and Reverse-Transformable	
	Polyme	eric Hydrogel Matrices	309
	Kazuhi	iko Ishihara, Haruka Oda, and Tomohiro Konno	
	12.1	Introduction	310
	12.2	Polymer Hydrogel as an Artificial ECM	311
	12.3	Physically Forming Crosslinkable Hydrogels	312
	12.4	Stimuli-Responsive Hydrogels	314
	12.5	Reversible and Spontaneously Forming	
		Hydrogels	315
	12.6	Rheological Properties of PMBV/PVA Hydrogel	318
	12.7	Control of Cell Proliferation through	
		PMBV/PVA Hydrogel	320
	12.8	Differentiation Induction of Stem Cells	
		Encapsulated in the PMBV/PVA Hydrogel	325
	12.9	Conclusions and Future Perspective	327

13.	"Smart	" Hydro	gels in Tissue Engineering and		
	Regene	erative N	1edicine Applications	333	
	Ana H.	Bacelar,	Ibrahim F. Cengiz, Joana Silva-Correia,		
	Rui A. Sousa, Joaquim M. Oliveira, and Rui L. Reis				
	13.1	Introdu	iction	334	
	13.2	Stimuli	-Responsive Hydrogels: Types,		
			ties, and Applications	338	
		13.2.1	Physical-Responsive Hydrogels	338	
			13.2.1.1 Temperature-responsive		
			hydrogels	338	
			13.2.1.2 Photo-/light-responsive		
			hydrogels	342	
			13.2.1.3 Electro- and magnetic-		
			responsive hydrogels	343	
		13.2.2		346	
			13.2.2.1 pH-responsive hydrogels	346	
			13.2.2.2 Glucose-responsive hydrogels	348	
		13.2.3	Biological-/Biochemical-Responsive		
			Hydrogels	350	
	13.3		sing of Hydrogels	352	
	13.4	Final R	emarks and Future Trends	356	
14.	Cell-En	capsulat	ing Polymeric Microgels for Tissue		
	Repair			369	
	Baeckk	kyoung S	ung and Min-Ho Kim		
	14.1	Introdu	iction	370	
	14.2	Natura	and Synthetic Polymers for		
			capsulating Microgels	371	
	14.3	Fabrica	tion Methods of Microgels for Cell		
		Encaps	ulation	372	
		14.3.1	Emulsification	373	
		14.3.2	Microfluidics	373	
		14.3.3	Lithography	373	
		14.3.4	Bioprinting	374	
	14.4	Design	Considerations of Microgels for Cell		
		Encaps		374	
		14.4.1	Crosslinking Type	374	
			14.4.1.1 Physical crosslinking	375	
			14.4.1.2 Chemical crosslinking	376	

		14.4.2	Engineering Biophysical Cues	376
			14.4.2.1 Molecular weight and	
			concentrations of polymers	377
			14.4.2.2 Crosslinking degree	377
		14.4.3	Incorporation of Biochemical Cues	378
			14.4.3.1 Cell-binding motif	378
			14.4.3.2 Incorporation of	
			bioactive ligands	379
			14.4.3.3 Cell density	379
		14.4.4	Engineering Biodegradation	380
		14.4.5	Engineering Structures of Microgels	381
	14.5	-	plication of Cell-Encapsulating	
		-	els for Tissue Repair	382
	14.6		ges for Clinical Translation	383
	14.7	Summa	ry and Future Perspectives	384
15.	Injecti	on Mate	rials for the Larynx	391
	Dong V	Nook Kin	n and Seong Keun Kwon	
	15.1	Overvie	ew	391
	15.2	Anaton	ny of the Vocal Fold	392
		15.2.1	Neuromuscular Anatomy of the	
			Vocal Fold	392
		15.2.2	Microanatomy of the Vocal Fold	393
	15.3	Patholo	ogic Changes of the Vocal Fold in Glottal	
		Insuffic	ciency	395
	15.4		l Principles of Injection	
			oplasty for Vocal Fold Paralysis	396
	15.5		l Characteristics of the Materials	
			tly Available for Vocal Fold	
		Augme		397
		15.5.1	Temporary Injection Materials	397
			15.5.1.1 Collagen-based products	398
			15.5.1.2 HA gels	398
		15.5.2	Permanent Injection Materials	399
			15.5.2.1 Autologous fat	399
			15.5.2.2 Calcium hydroxylapatite	399
	15.6		aterials for Injection Laryngoplasty	400
		15.6.1		
			Paralysis for Evaluation of Newly	
			Devised Injection Materials	401

xvi Contents

		15.6.2	Biosynthetic Degradable Polymers	
		:	as Carriers for Injection Materials	402
		15.6.3	Biosynthetic Scaffolds for Tissue	
			Augmentation and Delivery of	
]	Bioactive Regenerative Agents	403
		15.6.4	Injectable Forms of the ECM	406
	15.7	Summar	У	408
16.		-	in Tissue Engineering Strategies: Tools for	
			Nanopatterning, and/or Nanostructuring	
	of Pol	ymeric Sca	ffolds and Hydrogels	413
	Rui M	A. Doming	gues, Rui L. Reis, and Manuela E. Gomes	
	16.1	Introduc	tion	414
	16.2	Potencia	l of PNCs in Tissue Engineering	
		Strategie	25	416
	16.3	Nanopat	terned Surfaces	419
	16.4	Nanostru	actured Films and Coatings	419
	16.5	Porous F	oam and Sponge Scaffolds	422
	16.6	Fibrous	Nanocomposities	423
	16.7	Hydroge	l Nanocomposites	426
	16.8	Concludi	ng Remarks	429
PAR	ΤΙ	ELECTROS	PINNING SCAFFOLDS	439
17.			Using Dual Electrospinning for in	
			ar Tissue Engineering	441
	S. The	kkar, A. Dr	iessen-Mol, F. Baaijens, and C. Bouten	
	17.1	Introduc	tion: Cardiovascular Tissue	
		Engineer	ring	442
	17.2	Electros	pinning	444
		17.2.1	Single-Nozzle Electrospinning	444
		17.2.2	Dual-Nozzle Electrospinning	447
		17.2.3	Coaxial-Nozzle Electrospinning	449
	17.3		tration into Electrospun Scaffolds	450
	17.4		(An)isotropy	451
	17.5		ng Scaffold Porosity	452
			Increasing Fiber Diameter	453
		17.5.2	Tailoring Collectors	453

		17.5.3	Low-Temperature or Cryogenic	
			Electrospinning	454
		17.5.4	Multimodal Fiber Electrospinning	454
		17.5.5	Selective Removal of a Polymer	455
		17.5.6	Comparison of Techniques to Control	
			Pore Size	457
	17.6	Mechar	nical Properties and Degradation Rate	457
	17.7	Conclus	sion	459
18.	Biofun	ctionaliz	ation of Electrospun Fibers for Tissue	
	Engine	ering an	d Regenerative Medicine	479
	Antoni	o G. B. Co	astro, Fang Yang,	
	Jeroen	J. J. P. va	n den Beucken, and John A Jansen	
	18.1	Introdu	iction	479
	18.2	Electro	spinning Process	480
	18.3	Functio	onalization of Electrospun Fibers	482
		18.3.1	Co-electrospinning	482
			18.3.1.1 Blending	482
			18.3.1.2 Coaxial electrospinning	484
			18.3.1.3 Emulsion-based fibers	485
		18.3.2	Surface Modification	485
			18.3.2.1 Adsorption	485
			18.3.2.2 Covalent functionalization	486
	18.4	Applica		490
		18.4.1	Cell Adhesion	490
		18.4.2	Growth Factors and Gene Delivery	
			Systems	493
		18.4.3	5 5 11	494
			18.4.3.1 Antibacterial strategies	494
			18.4.3.2 Anticancer therapy	494
	18.5	Conclu	sion	495
19.	Electro	spun Fib	orous Scaffolds	511
	Sukhee	e Park, U	ng Hyun Ko, and Jennifer H. Shin	
	19.1	Introdu	iction	512
	19.2	Electro	spinning Process	513
		19.2.1	Fundamentals of Electrospinning	513
		19.2.2	General Materials	515
		19.2.3	Functional Materials	519

xviii Contents

		19.2.4	Process Parameters	523
	19.3	Advanc	ed Fabrication Methods	530
		19.3.1	Coaxial Electrospinning	530
		19.3.2	Multiple Electrospinning	532
		19.3.3	Control of Fiber Collection	534
		19.3.4	Multiscale Assembly	536
	19.4	Applica	itions for Tissue Engineering	538
		19.4.1	Skin	538
		19.4.2	Blood Vessel	541
		19.4.3	Bone and Cartilage	544
		19.4.4	Muscle	547
		19.4.5	Neural System	549
		19.4.6	Stem Cell	551
PAR	TV 3	D PRINT	ING FOR SCAFFOLDS	565
20.	3D Prin	nting of 1	Tissue/Organ Scaffolds for Regenerative	
	Medic	ine		567
	Xiaoho	ong Wang	9	
	20.1	Overvie	ew	567
	20.2	The Mo	deling of Tissue/Organ Scaffolds	568
	20.3	Materia	al Selection	570
	20.4	Technic	que Limitations	571
	20.5	Conclu	sions and Prospects	573
21.	3D Prii	nting Tec	hnology Applied to Tissue Scaffolds	581
	Dong-	Woo Cho,	Jin Woo Lee, and Jong Young Kim	
	21.1	Introdu	iction	582
	21.2	3D Prir	iting Methods Applied to Scaffolds	582
		21.2.1	Stereolithography	582
			21.2.1.1 Photopolymer scaffold	584
			21.2.1.2 Biopolymer scaffold	589
		21.2.2	Deposition Modeling	591
			21.2.2.1 Fused deposition modeling	591
			21.2.2.2 Organ printing system	596
		21.2.3	Selective Laser Sintering	598
		21.2.4	Inkjet-Based Printing	607
	21.3	Summa	iry	610

PAR	Τ	NANO-/B FOR SCAF	IOCONVERGENCE TECHNOLOGY FOLDS	619
22.			ssisted Tissue Engineering and	
	-		edical Therapy	621
	Nirm	5	thy, Rafiq Ahmad, and Gilson Khang	
	22.1			622
	22.2	Nanoma	terials for Tissue Engineering	625
		22.2.1	-8	627
		22.2.2	Regeneration of Mechanosensitive	
			Tissues	630
			22.2.2.1 Bone regeneration	630
			22.2.2.2 Cartilage regeneration	633
			22.2.2.3 Ligament/tendon	
			regeneration	634
		22.2.3	Regeneration of Electroactive Tissues	636
			22.2.3.1 Neuron regeneration	636
			22.2.3.2 Skeletal muscle regeneration	639
			22.2.3.3 Heart regeneration	640
		22.2.4	Regeneration of Shear Stress–Sensitive	
			Tissues	644
	22.3		al Risk of Nanomaterials	647
	22.4	Conclus	ion and Future Perspectives	648
23.			anodevices in Sensing and	
	-	nerative M		657
	Rafiq	i Ahmad, Ni	irmalya Tripathy, and Yoon-Bong Hahn	
	23.1	Introdu	ction	658
	23.2	Fabricat	ion of Nanodevices	660
		23.2.1	Bottom-Up Method	661
			Top-Down Method	663
	23.3	Applicat	tions of Nanodevices	663
			0 11	663
		23.3.2	Regenerative Medicine Applications	665
	23.4	Conclus	ions	668
24.	Micr	o-/Nanotec	h-Based Craniofacial Tissue Engineering	671
	Нет	in Nie and J	eremy J. Mao	
	24.1	Overvie		671
		2.01.10		

xx Contents

	24.2	Micro-/	Nanotech-Based Craniofacial Tissue	
		Engine	ering	673
		24.2.1	Selection of Materials	673
		24.2.2	Micro-/Nanotech-Based Scaffolding	675
	24.3	Conclus		683
25.			bes: A Kind of Novel Biomaterials	
	for Sca	affolds of	Tissue Engineering	689
	Xiaom	ning Li, Ro	ongrong Cui, Zheng Wang, Yubo Fan,	
	and Ir	n-Seop Lee	ę	
	25.1	Introdu	iction	690
	25.2	Carbon	Nanotubes in Bone Tissue Engineering	691
		25.2.1	F-US-Tube Nanocomposite Scaffolds	692
		25.2.2	Composite Scaffolds Composed of	
			PLGA and MWNTs	692
		25.2.3	Composite Scaffolds Composed of	
			Hydroxyapatite and CNTs	693
		25.2.4	Composite Scaffolds Composed of	
			Chitosan and CNTs	694
		25.2.5	3D Scaffold Surface Coated with CNTs	694
		25.2.6	Injectable Calcium Phosphate Cement	
			Composites with MWCNTs	694
		25.2.7	PCL-CNT Nanocomposites	695
		25.2.8	Comparison to Other Nanomaterial	
			in Bone Tissue Engineering	695
	25.3	Nerve 7	Fissue Engineering	696
		25.3.1	PET-MWCNT Composites Scaffold	699
		25.3.2	PLCL-MWCNT Composites Scaffold	699
		25.3.3	SWNT-CS/PVA Scaffold	700
		25.3.4	Silk-CNT Composite Scaffolds	701
		25.3.5	PET-MWCNT Scaffold	702
	25.4	The Oth	iers	704
PAR	Τ VII		AR NATURAL MATRICES FOR	
		SCAFFO	LDS	717
26.			Scaffolds for Functional Assembly	
			nd Nanomaterials	719
		-	ng Heon Yu, Moon Young Yang,	
	and Ye	oon Sung	Nam	
	26.1	Overvie	2W	719

	26.2	Phage I	Display	721
	26.3	Phage F	Platform for Biological Applications	726
		26.3.1	Discovery of Cancer Biomarkers	726
		26.3.2	Molecular Imaging for Diagnostics	730
		26.3.3	Applications to Drug and Gene Delivery	732
		26.3.4	Applications to Tissue Engineering	735
	26.4	Genetic	c Modification of Phages to Create	
		Inorgar	nic Structures	737
		26.4.1	Synthesis of Functional	
			Nanomaterials via Biomineralization	738
		26.4.2	Self-Assembly of Nanomaterials	741
	26.5	Phage I	Display with Extended Genetic Codes	744
	26.6	Conclus	sions	745
27.	Intellig	ent Scaf	fold–Mediated Enhancement of the	
	Viabilit	y and Fu	Inctionality of Transplanted Pancreatic	
	Islets t	o Cure D	iabetes Mellitus	757
	Min Jui	n Kim, He	aehyun Hwang, and Dong Yun Lee	
	27.1	Overvie	2W	757
	27.2	Scaffold	ds Fabricated with ECM Molecules	
		Decellu	larized from the Pancreas	758
		27.2.1	Methods of Whole-Organ	
			Decellularization	759
			27.2.1.1 Perfusion of chemical agents	760
			27.2.1.2 Perfusion of enzymatic agents	763
			27.2.1.3 Physical methods	764
		27.2.2	Islet Matrix Components and	
			Islet–ECM Interactions	764
			27.2.2.1 ECM composition of the	
			pancreatic islets	765
		07.0.0	27.2.2.2 Islet–ECM interactions	766
		27.2.3	Application of ECM Molecules	7(7
	272	Natural	Decellularized from the Pancreas	767
	27.3	27.3.1	l Polymer–Based Scaffolds	768
		27.3.1	Alginate Hydrogel as a Cell-Laden Scaffold	769
		27.3.2		769
		27.3.2	Collagen-Based Scaffold	772
	27.4		tic Polymer–Based Scaffold	775
	<i>L1</i> .1	27.4.1	PEG Scaffold	775

xxii Contents

		27.4.2	PVA Scaffold	776
		27.4.3	PLGA Scaffold	777
	27.5	Natural	and Synthetic Polymer	
		Compos	site–Based Scaffold	778
	27.6	Conclus	sion	779
28.	Extrace	ellular M	atrix–Derived Biomaterials:	
	Molecu	larly De	fined Ingredients and Processing	
	Technie	ques		793
	H. R. H	oogenka	mp, L. R. M Versteegden,	
	Т. Н. va	п Кирре	velt, and W. F. Daamen	
	28.1	Introdu	iction	793
	28.2	Extrace	llular Matrix	794
		28.2.1	Role of the ECM	794
		28.2.2	ECM Constituents	795
	28.3		larly Defined Biomaterials	796
		28.3.1	Mammalian ECM-Based Materials	797
			28.3.1.1 Collagen	799
			28.3.1.2 Gelatin	803
			28.3.1.3 Elastin	804
			28.3.1.4 Adhesive glycoproteins	805
			28.3.1.5 Keratin	809
			28.3.1.6 Proteoglycans and	
			glycosaminoglycans	810
		28.3.2		815
			28.3.2.1 Silk fibroin	815
			28.3.2.2 Alginate	816
			28.3.2.3 Chitosan	817
			28.3.2.4 Other polysaccharides	818
	28.4		ques and Major Tools for Scaffolding	819
		28.4.1		819
		28.4.2	J = - 0 = -	822
		28.4.3	8	823
		28.4.4		004
		00 / F	Windings	824
		28.4.5	I I I I I I I I I I I I I I I I I I I	826
			Decellularization	828
		28.4.7	0	830
		28.4.8	Sterilization of Biomaterials	832

			28.4.8.1	Chemical-based sterilization	833
			28.4.8.2	Radiation-based sterilization	834
			28.4.8.3	Biomaterial-specific	
				sterilization	835
		28.4.9	Regulate	ory Affairs	836
	28.5	Summa	ry and Fu	iture Perspectives	837
29.	Biologi	ical-Deriv	ed Bioma	terials for Stem Cell Culture	
	and Di	ifferentia	ation		875
	Yen-Lii	n Wu and	l Jiashing	Yu	
	29.1	Introdu	iction		875
	29.2	Stem Co	ell Engine	ering	877
	29.3	Biologi	cal-Derive	ed Materials	878
		29.3.1	Collager	1	878
			29.3.1.1	Immunogenicity and	
				biocompatibility	878
			29.3.1.2	Biodegradability and	
				collagenases	879
				Cell interaction	879
		29.3.2		n-Based Biomaterials	880
			29.3.2.1	Types of collagen	
				biomaterials	880
			29.3.2.2	Crosslinking methods and	
				reinforcement with	
				biopolymer combinations	880
			29.3.2.3	Recent applications of	
				collagen biomaterials	881
		29.3.3	Chitosar		883
			29.3.3.1	Structure-property	
				relationship	883
				Properties as biomaterials	884
			29.3.3.3	Chitosan 3D scaffolds/	005
			20.2.2.4	sponges	885
			29.3.3.4	Chitosan 2D films/	007
		20.24	Decalled	nanofiber membranes	886
		29.3.4		arized Tissue Matrix	887
			29.3.4.1	Whole-organ bioengineering	889 889
					889 890
			29.3.4.3	Lung	090

			29.3.4.4 Liver	891
			29.3.4.5 Kidney	891
	29.4	Summa	ry and Future Direction	893
30.			Dentin Matrix (DDM) Scaffolds for	
	Alveola	ar Bone E	Ingineering	903
	Jong H	o Lee, Yo	ung Kyun Kim, Masaru Murata,	
	and In	Woong l	Jm	
	30.1	History	of the Demineralized Dentin Matrix	904
	30.2	Charact	eristics of Scaffolds for Alveolar	
		Bone R	epair	904
	30.3	Develop	oment of DDM Scaffolds	906
		30.3.1	Demineralized Bone Matrix	906
		30.3.2	Definition of DDM	907
		30.3.3	Structure of Dentin and DDM	907
			30.3.3.1 DDM powder and block	907
			30.3.3.2 Macroporosity and	
			microporosity of DDM	907
		30.3.4	F	910
			30.3.4.1 Organics	910
			30.3.4.2 Inorganics	912
		30.3.5		913
		30.3.6	Acid Treatments	914
			Biocompatibility of DDM	914
			Osteoinductivity of DDM	916
		30.3.9	5	918
			Remodeling of DDM (Resorbability)	918
	30.4		affolds with Recombinant Human	
		BMP-2		920
		30.4.1		921
		30.4.2	Bioassay at 3 Weeks after	
			Implantation in Rats	921
		30.4.3	5	
			BMP-2/DDM Scaffolds	921
		30.4.4		
		-1.	rhBMP-2 Carrier	923
	30.5		Applications	924
		30.5.1		
			Second Molar	924

		30.5.2	AutoBT Block on Upper-Right First	
			Premolar	925
		30.5.3	Clinical Studies	926
	30.6	Tooth E	anks: Present and Future	929
31.	Biomin	netic Sca	ffold Fabrication for Tissue Engineering	937
	Junghv	va Cha, H	Iyun-Gu Yim, Su-Hwan Kim, Pilnam Kim,	
	and Na	thaniel S	S. Hwang	
	31.1	Introdu	iction	937
	31.2	Biomin	netic 2D Substrate Fabrication	939
		31.2.1	Photolithography	939
		31.2.2	Unconventional (Soft) Lithography	
			Photolithography	940
		31.2.3	Replica Molding	940
		31.2.4	Microcontact Printing	942
		31.2.5	Nanoimprinting Lithography	942
		31.2.6	Capillary Force Lithography	943
	31.3	Biomin	netic 2D Substrate Modification	944
		31.3.1	Protein Immobilization on 2D	
			Substrates	944
		31.3.2	ECM-Mimicking Peptide Modification	
			on 2D Substrates	946
		31.3.3	Carbohydrate Modification on	
			2D Substrates	946
	31.4	Biomin	netic Surface Modification Methods	947
		31.4.1	Physical 2D Absorption	947
		31.4.2		947
	31.5	3D Scaf	fold Fabrication	948
		31.5.1	3D Bioprinting Scaffolds	948
			Inkjet Bioprinter	948
			Microextrusion Bioprinter	949
			Laser-Assisted Bioprinter	950
		31.5.5		951
			31.5.5.1 Physical methods for	
			decellularization scaffold	
			fabrication	951
			31.5.5.2 Chemical methods for	
			decellularized scaffold	
			fabrication	952

			31.5.5.3	Enzymatic methods for	
				decellularized scaffold	
			i	fabrication	953
		31.5.6	Biomime	tic Porous Scaffold	
			Fabricati	on	953
		31.5.7	Biomime	tic Fibrous Scaffold	
			Fabricati	on	955
		31.5.8	Fabricati	on of Hydrogel Scaffolds	957
			31.5.8.1	Chemical crosslinking of	
]	hydrogels	958
			31.5.8.2	Photocrosslinking of	
]	hydrogels	958
			31.5.8.3	Enzyme-catalyzed	
				crosslinking of hydrogels	958
	31.6	Biomin	netic Modi	fication of 3D Scaffolds	960
		31.6.1	ECM-Bas	ed Hydrogels	960
	31.7	Future	Direction		961
	31.8	Conclus	sion		961
PART VIII SCAFFOLDS		LDS FOR 1	FARGET ORGANS	969	
32.	Scaffo	lds for Tra	acheal Reg	eneration	971
32.			-	eneration oo Park, and Soong Ho Um	971
32.		Won Shii	n, Kyung So	oo Park, and Soong Ho Um	
32.	Seung	Won Shii	n, <i>Kyung Sc</i> re and Fur	oo Park, and Soong Ho Um action of the Trachea	971
32.	Seung	<i>Won Shii</i> Structu	<i>n, Kyung So</i> re and Fur Basic Ana	oo Park, and Soong Ho Um action of the Trachea atomy of the Trachea	971 972
32.	Seung	Won Shin Structu 32.1.1 32.1.2	<i>n, Kyung So</i> re and Fur Basic Ana Mucosal I	<i>bo Park, and Soong Ho Um</i> action of the Trachea atomy of the Trachea Lining of the Trachea	971
32.	Seung	Won Shii Structu 32.1.1	<i>n, Kyung So</i> re and Fur Basic Ana Mucosal I	oo Park, and Soong Ho Um action of the Trachea atomy of the Trachea	971 972 972
32.	Seung	Won Shin Structu 32.1.1 32.1.2 32.1.3	n, Kyung So re and Fun Basic Ana Mucosal I Biomecha Trachea	<i>bo Park, and Soong Ho Um</i> action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the	971 972
32.	Seung 32.1	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir	<i>bo Park, and Soong Ho Um</i> action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ng for Tracheal Stenosis	971 972 972 974
32.	Seung 32.1	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition	oo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ng for Tracheal Stenosis as for Tracheal Regeneration	971 972 972 974 975
32.	Seung 32.1	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for	oo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ng for Tracheal Stenosis as for Tracheal Regeneration Tissue Engineering and	971 972 972 974 975
32.	Seung 32.1	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1 32.2.2	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for Prerequis	bo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ang for Tracheal Stenosis as for Tracheal Regeneration Tissue Engineering and sites for Tracheal Replacement	971 972 972 974 975 975
32.	Seung 32.1 32.2	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1 32.2.2	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for Prerequis Is for Trac	oo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ng for Tracheal Stenosis as for Tracheal Regeneration Tissue Engineering and	971 972 972 974 975 975 976
32.	Seung 32.1 32.2	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1 32.2.2 Scaffold	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for Prerequis Is for Trac The Biolo	bo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ang for Tracheal Stenosis as for Tracheal Regeneration Tissue Engineering and sites for Tracheal Replacement heal Regeneration	971 972 972 974 975 975 975 976 976
32.	Seung 32.1 32.2	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1 32.2.2 Scaffold 32.3.1	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for Prerequis Is for Trac The Biolo	bo Park, and Soong Ho Um Inction of the Trachea Atomy of the Trachea Lining of the Trachea anical Properties of the Ing for Tracheal Stenosis Ins for Tracheal Regeneration Tissue Engineering and Sites for Tracheal Replacement heal Regeneration Digic Scaffold	971 972 972 974 975 975 976 976 976
32.	Seung 32.1 32.2 32.3	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1 32.2.2 Scaffold 32.3.1 32.3.2	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for Prerequis Is for Trac The Biolo The Artif	bo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ang for Tracheal Stenosis as for Tracheal Regeneration Tissue Engineering and sites for Tracheal Replacement heal Regeneration ogic Scaffold ficial Scaffold	971 972 972 974 975 975 976 976 976 976 977
32.	Seung 32.1 32.2 32.3	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1 32.2.2 Scaffold 32.3.1 32.3.2 Cells 32.4.1	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for Prerequis Is for Trac The Biolo The Artif Stem Cell	bo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ang for Tracheal Stenosis as for Tracheal Regeneration Tissue Engineering and sites for Tracheal Replacement heal Regeneration ogic Scaffold ficial Scaffold	971 972 972 974 975 975 976 976 976 976 977 980
32.	Seung 32.1 32.2 32.3	Won Shin Structu 32.1.1 32.1.2 32.1.3 Tissue 32.2.1 32.2.2 Scaffold 32.3.1 32.3.2 Cells 32.4.1	n, Kyung So re and Fur Basic Ana Mucosal I Biomecha Trachea Engineerir Condition Need for Prerequis Is for Trac The Biolo The Artif Stem Cell Different	bo Park, and Soong Ho Um action of the Trachea atomy of the Trachea Lining of the Trachea anical Properties of the ang for Tracheal Stenosis as for Tracheal Regeneration Tissue Engineering and sites for Tracheal Replacement heal Regeneration ogic Scaffold icial Scaffold	971 972 972 974 975 975 976 976 976 976 977 980 980

Contents	xxvii
----------	-------

33.	Bladder Tissue Engineering				
	Weilur	Weilun Sun and Egbert Oosterwijk			
	33.1	The Urinary Bladder: Function and Structure	988		
	33.2	Bladder Reconstruction and Augmentation	989		
	33.3	Materials for Bladder Tissue Engineering	990		
	33.4	Cell Seeding	993		
	33.5	Vascularization	995		
	33.6	Stem Cells in Bladder Tissue Engineering	996		
	33.7	Animal Studies and Clinical Trials	998		
	33.8	Future Perspectives: A Complete Bladder?	1000		
34.	Scaffo	d Applications for Vascular Tissue Engineering	1009		
	Young	Min Ju, Hyunhee Ahn, John Vossler,			
	Sang J	in Lee, and James J. Yoo			
	34.1	Introduction	1009		
	34.2	Synthetic Biodegradable Polymer Scaffolds	1010		
	34.3	Collagen and Other Biopolymer Scaffolds	1012		
	34.4	Decellularized Tissue Scaffolds	1013		
	34.5	Cell-Based Vascular Tissue Engineering	1015		
	34.6	In situ "Cell Free" Vascular Tissue Engineering	1017		
	34.7	Conclusions	1018		
35.	Annulu	us Fibrosus Tissue Engineering: Achievements			
	and Fu	ture Development	1029		
	Bin Li,	Jun Li, Pinghui Zhou, and Huilin Yang			
	35.1	Introduction	1030		
	35.2	Fundamentals of Annulus Fibrosus	1032		
	35.3	Cells for Annulus Fibrosus Tissue Engineering	1033		
		35.3.1 Annulus Fibrosus Cells	1033		
		35.3.2 Chondrocytes	1035		
		35.3.3 Mesenchymal Stem Cells	1035		
	35.4	Scaffolds for Annulus Fibrosus Tissue			
		Engineering	1037		
		35.4.1 Microstructure of Scaffolds	1038		
		35.4.2 Mechanical Characteristics of			
		Scaffolds	1047		
	35.5	Growth Stimuli for Annulus Fibrosus			
		Tissue Engineering	1049		
	35.6	Concluding Remarks	1052		

36.	Cornea	al Endoth	elium Regeneration: Basic Concepts	1071
	Eun Young Kim and Gilson Khnag			
	36.1	Introdu	ction	1071
	36.2	Corneal	Endothelium	1072
		36.2.1	Corneal Endotheliopathies	1076
		36.2.2	1	1076
	36.3	-	neered Corneal Endothelium	1078
			Scaffolds	1078
		36.3.2		1080
	36.4	Conclus	ion	1081
PAR	Т ІХ С	ORUG DE	LIVERY SYSTEM FOR SCAFFOLDS	1089
37.	-		ut Screening of Extracellular viomaterials	1091
			nouchi, Willeke F. Daamen,	1051
			nduchi, whieke F. Duumen, and Toin H. van Kuppevelt	
	37.1			1002
	37.1		rinciples The Extracellular Matrix	1092 1092
		37.1.1	37.1.1.1 Diversity in ECM molecules	1092
			37.1.1.2 Collagen	1093
		37.1.2	ECM as a Biomaterial	1093
		07.112	37.1.2.1 Safety and biocompatibility	1071
			of biomaterials	1095
	37.2	Relation	n to Materiomics	1096
	0712	37.2.1	High-Throughput Analysis Using	1070
		07.12.12	Arrays of Biomaterials and Arrays	
			for Gene Expression	1096
			37.2.1.1 Arrays of biomaterials	1097
			37.2.1.2 Comprehensive analysis of	
			in vivo response to	
			biomaterials using	
			high-density gene expression	
			arrays and gene ontology	1098
	37.3	Future	Perspectives	1101
	37.4		ll Experiment 1: Biomaterial Array	1104
	37.5		ll Experiment 2: Gene Expression	

Contents	xxix
----------	------

38.	Effect of Scaffolds with Bone Growth Factors on				
	New Bone Formation Hae-Ryong Song, Swee-Hin Teoh, Hak-Jun Kim,			1113	
	Ji-Hoon Bae, Sung Eun Kim, Young-Pil Yun,				
	Muhammad Qasim, Jerry Chan, Zhi-Yong Zhang,				
	Chang-Wug Oh, and Jun-Ho Wang				
38.1 Introd			ction	1114	
	38.2	Bone Lengthening in Preclinical Animal			
		Studies		1115	
		38.2.1	Calcium Sulfate in Tibial Lengthening	1115	
		38.2.2	BMP-2-Coated Tricalcium Phosphate/		
			Hydroxyapatite for Femoral Distraction		
			Osteogenesis in a Rat Model	1120	
		38.2.3	Titanium with Heparin/BMP-2		
			Complex for Improving Osteoblast		
			Activity	1123	
		38.2.4	rhBMP2 for Distraction Osteogenesis		
			of Rat Tibias	1127	
		38.2.5	Cord Blood Stem Cells and rhBMP-2		
			in Tibial Lengthening	1131	
	38.3 Growth Factor–/Stem Cell–Mediated				
		Scaffold	ls for Bone Tissue Engineering	1134	
		38.3.1	Use of Fibrin and Stem Cells for		
			Bone Defect Healing in Rabbits	1134	
		38.3.2	Biphasic Calcium Phosphate		
			Lyophilized with Escherichia		
			coli–Derived rhBMP-2 for Bone		
			Formation of Middle Ear Cavity in		
			an Animal Model	1141	
		38.3.3	Discontinuous Release of BMP-2		
			from Honeycomb-Like		
			Polycaprolactone Scaffolds for		
			Healing in Large Bone Defects of		
			Rabbit Ulnas	1142	
		38.3.4	Use of Bioreactors, Human Fetal		
			Stem Cells, and 3D Scaffolds for		
			Bone Tissue Engineering	1147	

xxx Contents

		38.3.5	Solid Freeform Fabrication-Based BMP-2-Releasing PCL/PLGA	
			Scaffolds for in vitro and in vivo	
			Bone Formation	1153
		38.3.6	BMP-2-Immobilizing	1100
		001010	Heparinized-Chitosan Scaffolds for	
			Enhanced Osteoblast Activity	1158
	38.4	The Use	e of Scaffolds with or without Growth	1100
			and Cells for Clinical Trials	1162
		38.4.1		-
			for Bone Formation in a Rat Tibial	
			Defect Model	1164
39.	Drugs a	as Novel	Biomaterials for Scaffolds	1175
	Judee (Grace E. l	Nemeño, Soojung Lee, Kyung Mi Lee,	
	Jeewor	n Yoon, ai	nd Jeong Ik Lee	
	39.1	Overvie	2W	1175
	39.2	Drug Re	epositioning	1177
		39.2.1	Background	1177
		39.2.2	Drugs as Biomaterials	1178
	39.3	-	ound and Structure of Fragmin and	
		Protam		1184
		39.3.1	Background of Fragmin and	
			Protamine	1184
		39.3.2	/ / 1	
			Biomaterials for Tissue Engineering	
			and Regenerative Medicine	1187
	39.4		tions of Drug Repositioning in Tissue	
		0	ering and Regenerative Medicine	1195
		39.4.1	Use of Nanoparticles for	
		00.4.0	Microencapsulation of Isolated Islets	1196
	00 F	39.4.2	H/P as Cell Carriers: Cell Aggregation	1197
	39.5	Conclus	SIONS	1199
PAR			NABLING TECHNOLOGY FOR	
	S	CAFFOLI	DS	1209
40.		-	Surface Coatings for Silicone-Based	
	Implan			1211
	Jiyeon	Ham, Sui	nah Kang, Ji-Ung Park, and Yan Lee	
	40.1	Overvie	PW	1211

	40.2	Surface Oxidation of Silicone Implants		1214
		40.2.1	Plasma Treatment	1214
		40.2.2	UV/Ozone Treatment	1215
	40.2.3 Acid/Base Treatment		Acid/Base Treatment	1215
	40.3 Surface Coating with Bio-originated Mat		Coating with Bio-originated Materials	1215
		40.3.1	Hyaluronic Acid	1216
		40.3.2	Elastin Peptides	1216
		40.3.3	Collagen	1218
		40.3.4	Spider Silk Protein	1218
	40.4		Coating with Artificial Materials	1219
		40.4.1	Fluorine-Based Molecules	1219
		40.4.2		1220
		40.4.3	Polyacrylamide	1221
		40.4.4		1223
		40.4.5		1223
		40.4.6	Phospholipid-Mimicking Polymers	1227
	40.5	Conclus	sions	1231
41.	Synthe	tic/PLGA	Hybrid Scaffold for Tissue	
	Regene	neration: Update 2015		
	Gilson	Khang, E	Sun Young Kim, Jeong Eun Song,	
			r, Dong Sam Seo, and Jian-Qing Gao	
	41.1	Introdu	ction	1244
	41.2	Biomat	erials for TERM	1247
		41.2.1	Importance of Scaffold Matrices	
			in TERM	1247
			in TERM Natural Polymers	1247 1248
			Natural Polymers	
		41.2.2	Natural Polymers	
		41.2.2	Natural Polymers Synthetic Polymers and	1248
	41.3	41.2.2 41.2.3 41.2.4	Natural Polymers Synthetic Polymers and Poly(<i>a</i> -Hydroxy Ester)s	1248 1248
	41.3	41.2.2 41.2.3 41.2.4 Hybrid	Natural Polymers Synthetic Polymers and Poly(<i>a</i> -Hydroxy Ester)s Bioceramic Scaffolds	1248 1248
	41.3	41.2.2 41.2.3 41.2.4 Hybrid	Natural Polymers Synthetic Polymers and Poly(α-Hydroxy Ester)s Bioceramic Scaffolds and Composite Scaffold	1248 1248 1249
	41.3	41.2.2 41.2.3 41.2.4 Hybrid Biomate	Natural Polymers Synthetic Polymers and Poly(<i>α</i> -Hydroxy Ester)s Bioceramic Scaffolds and Composite Scaffold erials for TERM	1248 1248 1249
	41.3	41.2.2 41.2.3 41.2.4 Hybrid Biomate	Natural Polymers Synthetic Polymers and Poly(α -Hydroxy Ester)s Bioceramic Scaffolds and Composite Scaffold erials for TERM Poly(α -Hydroxy Acid) Family Hybrid Scaffolds	1248 1248 1249 1250
	41.3	41.2.2 41.2.3 41.2.4 Hybrid Biomate 41.3.1	Natural Polymers Synthetic Polymers and Poly(α -Hydroxy Ester)s Bioceramic Scaffolds and Composite Scaffold erials for TERM Poly(α -Hydroxy Acid) Family Hybrid Scaffolds Ceramic Hybrid Scaffolds Natural Polymer Hybrid Scaffolds	1248 1248 1249 1250 1250
	41.3	41.2.2 41.2.3 41.2.4 Hybrid Biomate 41.3.1 41.3.2	Natural Polymers Synthetic Polymers and Poly(α -Hydroxy Ester)s Bioceramic Scaffolds and Composite Scaffold erials for TERM Poly(α -Hydroxy Acid) Family Hybrid Scaffolds Ceramic Hybrid Scaffolds Natural Polymer Hybrid Scaffolds	1248 1248 1249 1250 1250 1256
	41.3	41.2.2 41.2.3 41.2.4 Hybrid Biomate 41.3.1 41.3.2 41.3.3 41.3.4	Natural Polymers Synthetic Polymers and Poly(α -Hydroxy Ester)s Bioceramic Scaffolds and Composite Scaffold erials for TERM Poly(α -Hydroxy Acid) Family Hybrid Scaffolds Ceramic Hybrid Scaffolds Natural Polymer Hybrid Scaffolds	1248 1248 1249 1250 1250 1256 1262
	-	41.2.2 41.2.3 41.2.4 Hybrid Biomate 41.3.1 41.3.2 41.3.3 41.3.4	Natural Polymers Synthetic Polymers and Poly(α -Hydroxy Ester)s Bioceramic Scaffolds and Composite Scaffold erials for TERM Poly(α -Hydroxy Acid) Family Hybrid Scaffolds Ceramic Hybrid Scaffolds Natural Polymer Hybrid Scaffolds Miscellaneous Scaffolds in Our	1248 1248 1249 1250 1250 1256 1262

42.	Biomedical Applications of Silk Fibroin			1285	
	Chan I	Hum Park	k and Dong Kyu Kim		
	42.1	Overview		1285	
	42.2 Silk Fib		proin Processing	1288	
		42.2.1	Preparation of Regenerated Silk		
			Fibroin Solution	1288	
		42.2.2	Preparation of Silk Fibroin		
			Membrane	1288	
		42.2.3	Preparation of Silk Fibroin		
			Hydrogel and Sponge	1289	
			Preparation of Silk Fibroin Sponge	1290	
		42.2.5	Preparation of Electrospun Silk		
			Fibroin	1291	
	42.3		Engineering Application of Silk		
			–Based Biomaterial	1293	
			Bone and Cartilage	1294	
		42.3.2		1294	
			Vasculature	1295	
			Ligament and Tendon	1297	
		42.3.5	Cornea	1297	
			Tympanic Membrane	1298	
		42.3.7	Esophagus	1298	
	42.4	Conclus	sion	1299	
43.	Tissue	Fabricati	ion and Regeneration by Cell		
	Sheet	Technolo	gy	1309	
	Yuji Haraguchi, Tatsuya Shimizu, Masayuki Yamato,				
	and Teruo Okano				
	43.1	Overvie	ew	1309	
	43.2	Temper	rature-Responsive Culture Surface		
		and Cel	l Sheets	1310	
		43.2.1	Temperature-Responsive Culture		
			Surface for Detaching Cell Sheets	1310	
		43.2.2	Further Improvement and		
			Application of Temperature-		
			Responsive Culture Surfaces	1313	
		43.2.3	Functional Tissue Fabrication		
			Using Cell Sheet Engineering	1314	

43.3	Fabrication and Regeneration of 3D						
	Tissues Using Cell Sheet Technology 1						
	43.3.1	Myocard	dial Tissue	1317			
		43.3.1.1	Autologous cell sheet				
			therapy	1317			
		43.3.1.2	Beating cardiac tissue				
			fabrication using cardiac cells	1318			
		43.3.1.3	Fabrication of vascularized				
			thicker tissue using				
			perfusable bioreactor				
			systems	1319			
	43.3.2	Clinical	Studies Using Cell Sheet				
		Technol	ogy	1321			
		43.3.2.1	Cell sheet therapy for				
			corneal limbal epithelial				
			stem cell deficiency	1322			
		43.3.2.2	Prevention of esophageal				
			strictures after endoscopic				
			submucosal dissection by				
			cell sheets	1322			
		43.3.2.3	Cell sheet therapy for				
			periodontitis	1323			
		43.3.2.4	Cell sheet therapy for				
			cartilage regeneration	1323			
	43.3.3	Other Ti	issue Regeneration Using				
		Cell She	et Technology	1325			
		43.3.3.1	Cell sheet therapy for				
			treating diabetes mellitus	1325			
		43.3.3.2	Cell sheet therapy for				
			treating hemophilia	1325			
		43.3.3.3	Hepatocyte tissue				
			engineering using cell				
			sheet technology	1326			
		43.3.3.4	Fabrication of hormone				
			supplying renal cell sheet	1327			
		43.3.3.5	Reconstruction of functional				
			endometrium-like tissue				
			using cell sheet technology	1328			

			43.3.3.6 Thyroid cell sheet for	
			rescuing hypothyroidism	1329
			43.3.3.7 Production of tumor-	
			bearing animal models	
			using cancerous cell sheets	1330
	43.4	Automa	ation and Mechanization for	
			tion of 3D Tissues	1331
		43.4.1		1001
		101111	System	1331
		43.4.2	-	1332
		43.4.3		1002
		15.1.5	System for Fabricating 3D Tissues	1332
		43.4.4		1333
		43.4.5		1334
	43.5	45.4.5 Conclus		1334
	45.5	Concius	SIGHS	1555
44.	Stem C	ell Engin	eering Using Bioactive Molecules	
			erative Medicine	1353
		-	d Yoon Jeong Park	
	44.1	Overvie		1353
	44.2		eneration Bioactive Molecules:	1000
	· ··-	Protein		1356
			Recombinant Human Growth Factors	1357
		44.2.2	ECM	1359
	44.3	Bioacti	ve Molecules: Peptides	1360
		44.3.1	ECM-Derived Peptides	1360
			44.3.1.1 Collagen-derived peptides	1361
			44.3.1.2 Osteopontin-derived	
			peptides	1362
			44.3.1.3 Bone sialoprotein-derived	
			peptides	1364
			44.3.1.4 KRSR-containing peptides	1364
			44.3.1.5 RGD-containing peptides	1365
		44.3.2		1365
			44.3.2.1 BMP-derived peptides	1366
		D	44.3.2.2 FGF-derived peptides	1367
	44.4		ve Molecules: Small Molecules	1368
		44.4.1	Sphingosine-1-Phosphate	1369
		44.4.2	Lysophosphatidic Acid	1370

	44.4.3	Melatonin	1370
	44.4.4	Purmorphamine	1371
	44.4.5	Resveratrol	1372
	44.4.6	Prostagladins	1373
	44.4.7	Adenosine	1374
	44.4.8	Statins	1375
44.5	Conclus	sions and Outlook	1376
Index			1385

Preface to the 2nd Edition

I edited the 1st edition of *Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine* in 2012, which comprised 45 chapters. The very recent environment of academia and industry in these areas has quickly and extensively changed in comparison to 4 years ago. For example, 19 regenerative medicine and tissue engineering, including cell therapy, products were launched in the Korean market. Among them, 4 stem cell products, approved by the Korea FDA, were launched in the Korean market in 2012. They are the world's first-time-reported autologous bone marrowderived stem cells (BMSCs), autologous adipose-derived stem cells (ASCs), and allogenic umbilical cord-derived stem cells (UBSCs) for the treatment of myocardial infarction, ALS, Crohn's disease, and chondyle defects, respectively.

From the global point of view, four stem therapy products have been introduced. Additionally, over 100–200 clinical trial phases I, II, and III with a wide arena of scientific fields are under development throughout the world. This may be a burgeoning step toward the advancement of regenerative medicine compared to that of conventional medication therapy.

This handbook focuses on all aspects of scaffolds, especially intelligent scaffolds, from basic science to industries to clinical applications. It is organized into 10 major areas. Part I, "Introduction," reveals some of fundamentals of biomaterials, scaffolds, and manufacturing methods. Part II covers ceramic and metal scaffolds. Part III, "Intelligent Hydrogels," deals with the various types of hydrogels for tissue regeneration. In Part IV, scaffolds from electrospinning nanofibers have been covered. In Parts V and VI, 3D printing and nano-/bioconvergence technology for scaffolds have been introduced, respectively. Part VII covers the recent development of an acellular natural matrix for smart scaffolds. Part VIII of this handbook deals with the recent clinical trial on specific target organs using intelligent scaffolds. Part IX introduces the drug delivery system, and Part X deals with future enabling technology for scaffolds. The authors have tried to cover the entire area of smart scaffolds for regenerative medicine and tissue engineering through the 44 chapters. I am indebted to the authors for willing acceptance, devotion, and contribution to each topic.

I express my thanks to my students, Mr. Jae Hoon Shin and others, and the editor, Archana Ziradkar, for editing all chapters. Especially, Ms. Ziradkar was fighting against 44 huge chapters and 1400 pages every day. Finally, I really appreciate our publisher, Pan Stanford Publishing, especially Mr. Stanford Chong. Without his trust and guidance, this huge work could not have been accomplished.

Gilson Khang, PhD

Preface to the 1st Edition

It has been recognized that regenerative medicine and tissue engineering offer an alternative technique to whole-organ and tissue transplantation for diseased, failed, or malfunctioning organs. Millions of patients suffer from end-stage organ failure or tissue loss annually. The only way to solve this problem might be organ transplantation and biomaterials transplantation. However, in order to avoid the shortage of donor organs and other problems caused by poor biocompatibility of biomaterials, a new hybridized method combined with cells and biomaterials had been introduced as regenerative medicine and tissue engineering around 20 years ago. The specialty of regenerative medicine and tissue engineering continues to grow and change rapidly. This area saw major advances in the past few years. This field for academic research and commercialization is needed in multidisciplinary areas such as adult, embryoinic, and induced pluripotent cells, genetic programming, nuclear transfer, cloning, genomics, proteomics, nanotechnology, biomaterials, etc. Thanks to the latest 20 years' endeavor, several tissue-engineered products (TEMPS) and regenerative medicinal products (RMP) are on the boundary of the translation of benchside discoveries to clinical therapies. For the reconstruction of a neotissue by regenerative medicine and tissue engineering, triad components such as (i) cells that are harvested and dissociated from the donor tissue, including nerve, liver, pancreas, cartilage, and bone, as well as embryonic stem cells, adult stem cells, induced pluripotent cells (iPS), or precursor cells; (ii) biomaterials as scaffold substrates whose cells are attached and cultured, resulting in the implantation at the desired site of the functioning tissue; and (iii) growth factors that are promoting and/or preventing cell adhesion, proliferation, migration, and differentiation by upregulating or down-regulating the synthesis of protein, growth factors, and receptors are needed. This handbook has concentrated on all the things for scaffolds among triad components, especially intelligent scaffolds from basic science to industries to clinical applications. This textbook is organized into seven major areas.

xl Preface to the 1st Edition

Part I, "Introduction," reveals some of fundamentals of the biomaterials, scaffolds, and manufacturing methods. Part II covers ceramic and metal scaffolds. Part III, "Intelligent Hydrogels," deals with various types of hydrogels for tissue regenerations. In Part IV, topics of scaffolds from electrospinning nanofibers have been covered. In Part V, novel biomaterials for scaffolds have been introduced, especially to mimic Mother Nature. The sixth part covers the recent novel fabrication methods for smart scaffolds. The last part, Part VII, of this handbook deals with the recent clinical trial of specific target organs using intelligent scaffolds. The authors have tried to dedicate the 44 chapters to the whole area of the recent topic of smart scaffolds for regenerative medicine and tissue engineering. I am indebted to the authors for their willing acceptance, devotion, and contribution to each recent topic. I express my thanks to my students Mrs. Yong Ki Kim, Jung Bo Shim, and Young Un Kim for editing all manuscripts. Finally, I really appreciate our publisher, Mr. Stanford Chong. Without his trust and guidance, this huge work could not have been accomplished. Also, I would like to give special appreciation to Mr. Sarabjeet Garcha and Ms. Archana Ziradkar for their hard work.

Gilson Khang, PhD