

Amorphization and Thermal Properties

edited by

Konstantinos Termentzidis

Nanostructured Semiconductors

Nanostructured Semiconductors

Amorphization and Thermal Properties

edited by
Konstantinos Termentzidis

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Nanostructured Semiconductors: Amorphization and Thermal Properties

Copyright © 2017 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4745-64-2 (Hardcover) ISBN 978-1-315-36445-2 (eBook)

Printed in the USA

Dedicated to my parents

Anastasia and Christos and in memory of Georgios Kanellis

Contents

xvii

Preface

Fo	rewo	ord			xxi
				Part I	
			TH	IEORY-SIMULATIONS	
1	Stru	ctural I	Propertie	s: Crystalline versus Amorphous Phases	3
	Laui	ent Piz	zagalli ar	nd Andreas Pedersen	
	1.1	Intro	duction		3
	1.2	Struct	tural Ind	icators	5
		1.2.1	Density		5
		1.2.2	Radial I	Distribution Functions	5
		1.2.3	Angulai	Distributions	7
		1.2.4	Networ	k Topology	9
	1.3	Amor	phous M	odels	10
		1.3.1	CRN-Lil	ke Models	10
		1.3.2	Micro- a	and Para-Crystalline	11
		1.3.3	Generat	tion Methods	12
			1.3.3.1	Building algorithms	12
			1.3.3.2	Simulation of experimental	
				preparation	12
			1.3.3.3	Experimental data fit strategy	13
	1.4	Concl	usion		13
2		rmal Co		ty of Disordered Systems	17
			•	amic Limit	18
			lation Fu		20

	2.3	Kubo Formula	25
	2.4	Microscopic Model: The Harmonic Solid	27
		2.4.1 Dynamical Matrices	28
		2.4.2 Harmonic Oscillators	31
		2.4.3 Energy Flux Operator	35
	2.5	Numerical Results	39
		2.5.1 Formula for the Thermal Conductivity	39
		2.5.2 Perfect Crystal	42
		2.5.3 Structural Disorder	49
		2.5.4 Configurational Disorder	55
	2.6	Summary	58
3	Nan	ostructures and Heat Transport	69
	Sam	y Merabia and Konstantinos Termentzidis	
	3.1	Introduction	69
	3.2	Scattering Mechanisms from Bulk to Nano	76
	3.3	Interfacial Scattering: Models for the Thermal	
		Boundary Conductance	79
		Coherence Effects	89
	3.5	Phonon Rectification	91
	3.6	Amorphous Limit to the Thermal Conductivity	92
4	Арр	lications	101
	Мах	rime Verdier, Rodolphe Vaillon, Samy Merabia,	
	Dav	id Lacroix, and Konstantinos Termentzidis	
	4.1	Electronics, Information Technologies	102
	4.2	Optoelectronics	103
	4.3	Thermoelectrics	104
	4.4	Photovoltaics, Thermophotovoltaics	106
	4.5	Phononics, Thermal Diodes	107
	4.6	Biomedical Applications	109
	4.7	Synthesis of Nanostructures, Nanofabrication and	
		Reliability/Calibration of Experimental	
		Measurements	110
5	Mor	nte Carlo Resolution of the Boltzmann Transport	
	•	ation	115
	Dav	id Lacroix	
	5 1	Introduction	115

186

		7.3.1	NEMD Simulation Settings	186
		7.3.2	Results	187
	7.4	Concl	usions	189
8	Арр	roach-t	to-Equilibrium Molecular Dynamics	191
	Evel	yne Lar	mpin, Pier Luca Palla, Hayat Zaoui, and	
	Fabi	rizio Cle	eri	
	8.1	Intro	duction	191
	8.2	Appro	oach-to-Equilibrium Molecular Dynamics	192
	8.3	Heat l	Equation	193
	8.4	From	Decay Transient to Thermal Conductivity	198
	8.5	Therr	nal Conductivity of Crystalline and	
		Amor	phous Silica	199
	8.6	Concl	usions	203
9	Ato	mistic S	Simulations of Vibrational Modes of Crystalline	
	Nan	oinclus	sions in an Amorphous Matrix	207
	Tang	guy Dai	mart, Yaroslav M. Beltukov, Amani Tlili,	
	and	Anne T	^T anguy	
	9.1	Intro	duction	208
	9.2	Atom	istic Simulations of Vibrations	209
		9.2.1	General Approximations in Molecular	
			Dynamics Simulations	209
		9.2.2	Resonant Modes	212
		9.2.3	Dynamical Structure Factor	213
		9.2.4	Wave Packet Propagation	214
	9.3	Eigen	modes of Isolated Inclusions	215
		9.3.1	Continum Mechanics	215
		9.3.2	Amorphous Inclusions	216
		9.3.3	Crystalline Inclusions	218
	9.4	Vibra	tional Response of the Amorphous Matrix	218
		9.4.1	Boson Peak	219
		9.4.2	Extended and Localized Eigenmodes	222
		9.4.3	Mean Free Paths and Diffusivity	223
	9.5	Vibra	tions of the Amorphous Matrix with	
		the In	nclusions	226
		9.5.1	Eigenmodes of the Matrix with the	
			Inclusions	226

Contents	хi

		9.5.2 Vibrational Density of States (VDOS)	227
		9.5.3 Dynamical Structure Factor	229
		9.5.4 Heterogeneous Propagation in the Presence	
		of Nanocrystalline Inclusions	229
	9.6	Conclusion	230
10	Struc	tural Properties and Defects of III-Nitride	
	Semi	conductors at the Nanoscale	237
	J. Kio	seoglou	
		Introduction	238
	10.2	Extended Defects	241
		10.2.1 Planar Defects	241
		10.2.1.1 The $\{10ar{f 1}0\}$ planar defects	241
		10.2.1.2 The $\{1\overline{2}10\}$ planar defects	245
		10.2.2 Stacking Faults and Point Defects	249
	10.3	3 1 () /	
		Using ab initio and Empirical Potential	
		Calculations	251
	10.4	Diffusion	258
		10.4.1 Diffusion of Metal Vacancies through	
		AlN/GaN Interfaces	258
	10.5	Surface Reconstructions: The Semipolar {1013}	
		GaN Surfaces	265
	10.6	Analysis on the Shape of the GaN Nanowires	270
		Part II	
	FAB	RICATION AND MEASUREMENT TECHNIQUES	
11		rphization of Porous Silicon Nanostructures by Heavy	
		radiation	281
		nut, P. Newby, M. Massoud, V. Lysenko, P. O. Chapuis,	
		. M. Bluet	201
		Introduction	281
	11.2	Experiments 11.2.1 Porous Silicon Formation	283
			283 284
		11.2.2 Swift Heavy Ion Irradiation Experiments11.2.3 Characterization Experiments	284
	11 2	Results	
	11.3	Results	287

		11.3.1	Surface Chemistry	287
		11.3.2	Morphology and Amorphous Fraction	288
	11.4	Conclu	sions	294
12	Crysta	alline/Ar	morphous Porous Ge Nanostructures by	
	Electi	ochemic	cal Etching	297
	Sergii	Tutashk	onko and Tetyana Nychyporuk	
	12.1	Introdu	uction	297
	12.2	Experi	mental Setup	300
	12.3	Mesop	orous Ge	302
		12.3.1	Morphology Tuning: Anodic Current	
			Density	303
		12.3.2	Morphology Tuning: Surface	
			Passivation	305
	12.4	Structu	ıral Analysis of Mesoporous Ge	310
	12.5	Therm	al Conductivity of Mesoporous	
		Germa	nium	312
	12.6	Conclu	sions	313
13	Amor	phous/f	Nanocrystalline Composites: Recrystallization	317
	Valen	tina M	Giordano and Ameni Tlili	
		una ivi.		
	13.1		uction	317
	13.1	Introdu	uction Thermal Transport in Amorphous/	317
	13.1	Introdu		317 318
		Introdu 13.1.1	Thermal Transport in Amorphous/	
		Introdu 13.1.1 From a	Thermal Transport in Amorphous/ Nanocrystalline Composites	318
	13.2	Introdu 13.1.1 From a 13.2.1	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass	318 321
	13.2	Introdu 13.1.1 From a 13.2.1 The Me	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses	318 321
	13.2	Introdu 13.1.1 From a 13.2.1 The Me Crystal	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and	318 321 325
	13.2	Introdu 13.1.1 From a 13.2.1 The Me Crystal 13.3.1	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and llization	318 321 325 326
	13.2 13.3	Introdu 13.1.1 From a 13.2.1 The Me Crystal 13.3.1 13.3.2	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and llization Physical Aging	318 321 325 326 326
	13.2 13.3	Introdu 13.1.1 From a 13.2.1 The Me Crystal 13.3.1 13.3.2 Amorp	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and llization Physical Aging Crystallization	318 321 325 326 326 327
	13.2 13.3	Introdu 13.1.1 From a 13.2.1 The Me Crystal 13.3.1 13.3.2 Amorp 13.4.1	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and Elization Physical Aging Crystallization Chous/Crystalline Composites	318 321 325 326 326 327 328
	13.2 13.3	Introdu 13.1.1 From a 13.2.1 The Me Crystal 13.3.1 13.3.2 Amorp 13.4.1 13.4.2	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and Ilization Physical Aging Crystallization Phous/Crystalline Composites The Crystalline Fraction	318 321 325 326 326 327 328 331
	13.2 13.3	Introdu 13.1.1 From a 13.2.1 The Me Crystal 13.3.1 13.3.2 Amorp 13.4.1 13.4.2	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and Ilization Physical Aging Crystallization Chous/Crystalline Composites The Crystalline Fraction The Avrami Index	318 321 325 326 326 327 328 331
	13.2 13.3	Introdu 13.1.1 From a 13.2.1 The Me Crystal 13.3.1 13.3.2 Amorp 13.4.1 13.4.2 13.4.3	Thermal Transport in Amorphous/ Nanocrystalline Composites Liquid to a Glass Metallic Glasses etastable Nature of a Glass: Aging and Ilization Physical Aging Crystallization Chous/Crystalline Composites The Crystalline Fraction The Avrami Index The Determination of Crystalline	318 321 325 326 326 327 328 331 335

14	Ball Milling-Induced Nanocrystallization and					
	Amor	phizatio	n	351		
	Eyripi	des Hatz	rikraniotis, Theodora Kyratsi, and			
	Konstantinos M. Paraskevopoulos					
	14.1	Introdu	action	352		
	14.2	Fundar	nentals of Ball Milling	354		
		14.2.1	Mechanical Alloying	355		
		14.2.2	Production of Nanostructured Materials	356		
		14.2.3	Production of Amorphous Materials	356		
	14.3	Experi	mental Setup	357		
		14.3.1	The Type of Mill	357		
		14.3.2	Milling Medium	359		
		14.3.3	Milling Speed and Time	360		
		14.3.4	Ball-to-Material Ratio (BMR) and Extent			
			of filling the vial	361		
		14.3.5	Milling Atmosphere	361		
		14.3.6	Process Control Agents	361		
		14.3.7	Milling Temperature	362		
	14.4	The Me	echanism of Amorphization by Ball Milling	363		
	14.5	Case St	rudies of Ball-Milled Materials	364		
		14.5.1	Nanocrystalline PbTe Synthesized by			
			Mechanical Alloying	366		
		14.5.2	Fabrication of Mg ₂ Si Nanocomposites by			
			Mechanical Milling	369		
		14.5.3	The Effect of Ball Size on Nanocrystallinity	373		
		14.5.4	Grain Size and Crystalline Size	377		
		14.5.5	Ball Milling Amorphization	379		
	14.6		-	384		
15	Physi	cal Vapo	r Deposition for Tin-Induced and Laser			
	-	allization		391		
	Vlad I	Neimash				
	15.1	Introdu	uction	392		
	15.2	Experi	mental Setup	393		
	15.3	Tin-Inc	duced Crystallization of Si in the Si-Sn Alloys	394		
		15.3.1				
			Alloys Produced by Vapor Deposition	394		

		15.3.2	The Mechanism of Tin-Induced	
			Crystallization of Amorphous Silicon	404
	15.4	Tin-Ind	luced Crystallization of Si at Laser	
		Irradia	tion	415
	15.5	Conclu	sions	420
16	Nano	particle	Formation via Magnetron Sputtering with	
	Inert	Gas Agg	regation	425
	Panag	giotis Gra	ammatikopoulos and Mukhles Sowwan	
	16.1	Introdu	ıction	426
	16.2	The Ma	ngnetron Sputtering Method	427
	16.3	Compu	ter Simulation of Gas-Phase Synthesis	430
		16.3.1 16.3.2	Why Is Computer Modelling Necessary? MD Simulation of NP Growth with Inert	430
			Gas Temperature Control	431
	16.4	Analysi	is of Temperature Evolution in NP Formation	436
		16.4.1	-	437
		16.4.2	9	
			Aggregation Zone	440
	16.5	Case St	audy (i): Crystallisation of Si NPS Using Inert	
		Gas Ter	mperature Control	443
	16.6	Case St	rudy (ii): Heterogeneous Crystallisation of	
		Si NPS	Using Ag Atoms	450
		16.6.1	Simultaneous Co-Sputtering of Si and	
			Ag Nanoclusters	451
		16.6.2	Si NP Crystallisation via Inoculation with	
			Ag Atoms	456
	16.7	Summa	nry	464
17	Scanr	ning Thei	rmal Microscopy	471
	Séver	ine Gom	ès and Ali Assy	
	17.1	Introdu	ıction	471
	17.2	Experi	mental Setup	472
		17.2.1	General Principle	472
		17.2.2	Resistive SThM techniques	475
			17.2.2.1 Metallic probes: description	475
			17.2.2.2 Metallic probe: operating modes	476
			17.2.2.3 Other probes used in active mode	478

	17.3	Approa	ch of the I	Measurement	479
		17.3.1	Modeling	of the Probe-Sample System	479
			17.3.1.1	Description of the probe	479
			17.3.1.2	Description of sample	480
			17.3.1.3	Description of the probe-sample	
				thermal contact	481
			17.3.1.4	Measurement modeling	482
		17.3.2	Calibratio	on	483
	17.4	Selected	d Applicat	ion	484
	17.5	Conclus	sions		487
18	Therr	nal Wave	Methods		493
	Ali As	sy, Séveri	ne Gomès,	, Pavlo Lishchuk, and	
	Myko	la Isaiev			
	18.1	Introdu	ction		494
	18.2	Therma	ıl Wave Fu	ındamentals	495
		18.2.1	Concept		495
		18.2.2	Various N	Methods	497
	18.3	Method	S		499
		18.3.1	3ω Metho	od	499
		18.3.2	2ω Metho	od	504
	18.4	Phototh	nermal and	d Photoacoustic Techniques	507
	18.5	Conclus	sions		513
19	X-Ray	s and Ne	utrons Sp	ectroscopy for the Investigation	
				roperties in Crystalline and	
		phous Sc			517
	-			ina M. Giordano,	
		-	•	rc De Boissieu, and Holger Euchner	
		Introdu			517
	19.2			Phonons in Crystals	520
			Phonons		520
				ncepts of a Scattering Experiment	523
			Elastic Sc	=	528
				Scattering from One Phonon	529
		19.2.5	Phonons		534
			19.2.5.1	Neutron resonance spin echo	
				technique	540

xvi | Contents

	19.3	Phonons in an Amorphous System		543
		19.3.1	Dynamics in a Disordered System	543
		19.3.2	A Length Scale-Dependent Dynamics	545
		19.3.3	The Typical Spectrum of a Disordered	
			System	548
		19.3.4	Phonons in a Metallic Glass	552
	19.4	Conclusions		556
Index			565	

Preface

This book is the result of a collective work of 42 authors through 19 chapters on nanostructures and nanostructured materials containing both amorphous and crystalline phases with a particular focus on their thermal properties. There are two distinct parts: The first combines theory and simulations methods with specific examples, and the second part discusses methods to fabricate nanomaterials with crystalline and amorphous phases and experimental techniques to measure the thermal conductivity of such materials.

Chapter 1 details the structural properties of the crystalline and the amorphous phases, highlighting their differences in the density, radial, and angular distribution functions, and analyzing the different amorphous models used in the literature. This chapter introduces and explains a lot of the terms used herein. In Chapter 2, a general theory for the lattice thermal conductivity is developed, for both crystals and disorder systems. This analysis is used for ab initio simulations of the thermal conductivity of bulk materials. The taxonomy of vibration modes in amorphous materials is fully detailed. In Chapter 3, the differences in thermal properties between bulk materials and nanostructures are discussed. The transition from ballistic to diffusive regimes and the underlying scattering processes occurring at the nanoscale are explained. Furthermore, in this chapter, there are sections dedicated to the phonon coherence effects, the phonon rectification, and the amorphous limit of the thermal conductivity. In Chapter 4, the importance of heat transport at the micro/nanoscale for several applications is treated for a wide range of domains such as electronics, bio-engineering, and energy harvesting. In Chapter 5, the Monte Carlo methodology to solve the Boltzmann transport equation is given, with case studies such as nanowires and nanomaterials. The latter methodology is the most adequate simulation method for micro/nanostructures with length scales greater than some tenths of nanometers.

For the prediction of the thermal properties in the ballistic regime, atomistic approaches are preferred. Chapters 6, 7, and 8 present three different molecular dynamics (MD) methodologies: equilibrium MD (EMD) in Chapter 6, non-equilibrium MD (NEMD) in Chapter 7, and the approach to equilibrium MD (AEMD) in Chapter 8. In Chapter 6, an introduction to MD is given and the EMD methodology based on the Green-Kubo formula is derived to estimate the thermal conductivity, thermal conductance, and resistance with an example: the thermal conductance of the argon/heavy argon interface. In Chapter 7, the NEMD methodology is described to calculate the thermal conductivity of nanomaterials and applied in two examples: superlattices and nanowires which incorporate both crystalline and amorphous phases. Striking results show that an amorphous fraction of only 20% in certain geometries of nanostructures is enough to obtain sub-amorphous thermal conductivity. In Chapter 8, the AEMD method is analyzed, which is the only method among the three MD methods appropriate to describe transient regimes. The thermal conductivities of amorphous silica and α -quartz thin films are calculated with this latter method. In Chapter 9, numerical methods to treat the vibrational properties of isolated crystalline and amorphous nanoparticles and nanoinclusions are analyzed: resonant modes analysis, vibrational density of states, and dynamical structural factors. The last chapter of the first part of the book is dedicated to the III-nitrides group and their structural properties and defects as extended defects, polar and non-polar interfaces, diffusion of defects, and surface reconstruction.

The second part of the book starts with Chapter 11, in which a deep analysis of the role of the heavy ion irradiation for the amorphization of porous silicon nanostructures is proposed. It explains why the heavy ion irradiation influences only porous materials while remains unaffected on the bulk ones. The quantification of the amorphous fraction as a function of the ion fluence is also given. The infrared absorbance and the Raman spectra are used to appraise the influence of different irradiation rates on porous silica. In Chapter 12, another crystalline/amorphous porous material is

treated for germanium compounds, with a porosity induced by electrochemical etching. A review of the possible geometries of the pores is given. It is also explained how these geometries can be realized in the case of Ge by changing two key parameters during the electrochemical etching: the anodic current density and the hydrogen passivation degree. In Chapter 13, an experimental protocol to achieve amorphous/crystalline composites is described—more precisely, the methodology to obtain crystalline nanoinclusions embedded into an amorphous matrix. Starting from amorphous materials, the strategy is to interrupt the crystallization process before the crystallization peak is completed. Chapter 14 deals with the ball milling technique, which is used to amorphize and to nanocrystallize materials with or without chemical transformation. Pedagogic case studies are given for each category with explanations of each key parameter and their influence on the mechanical properties of the elaborated nanostructures. In Chapter 15, the tin-induced crystallization of amorphous silicon manufactured by physical vapor deposition and the possibility of the crystallization control during laser annealing are analyzed. These methods can advance the wide-scale commercialization of nanocrystalline silicon for the third and next generations of solar cells and other optoelectronic devices. Chapter 16 contains both the experimental methodology and simulation evidence for the crystallization of silicon nanoparticles utilizing magnetron sputtering. Two methods are proposed: first, the use of inert gas temperature control during magnetron sputtering, in which the inert gas pressure and composition are the key parameters to control the size distribution of the nanocrystals, and second, the use of silver atoms for the heterogeneous crystallization of silicon nanoparticles.

The last three chapters of the book—Chapter 17 (scanning thermal microscopy, SThM), Chapter 18 (thermal wave methods), and Chapter 19 (X-rays and neutron spectroscopy)—are focused on experimental methods for the measurement of thermal properties appropriate for structures that contains both crystalline and amorphous phases. In Chapter 17, a review of SThM in the active mode is given, which enables nanometer-scale heat flow measurements and materials' thermal characterization. Then, the approaches to modeling and calibrating SThM probes are explained and finally the method is used to measure the thermal conductivity of nanoporous silicon with amorphous shells around the pores. In Chapter 18, a review of experimental thermal wave methods is presented. With the ac-current $(2\omega/3\omega)$ method, the thermal conductivity components of thin films (in-plane/cross-plane) can be estimated, using thin metallic layers acting as a heater and/or a thermometer. The photothermal gas-microphone technique uses light to generate a heat source while the measured pressure variations can be directly related to the thermal properties. The method is applied on a partially amorphous porous silicon. The last chapter also focuses on experimental techniques: inelastic neutron scattering and X-ray scattering to measure phonon velocities and lifetimes. The authors explain the measurement principles and the experimental limitations while in the second part of Chapter 19, the atomic dynamics differences of an amorphous and a crystalline system are detailed.

Foreword

Nanostructured Semiconductors: Amorphization and Thermal Properties aims to expose the reader to the state of the art in several areas of modern science of materials. The most prominent focus of this book is on theory and simulations of thermal conduction in all major types of materials microstructures, including bulk crystals, nanocrystalline and nanoporous materials, and fully amorphous materials. Chapters 2 to 9 provide a comprehensive description of all major theoretical and simulation methods used to understand, model, and predict thermal conduction characteristics of materials and their interfaces. What is of particular value in this book is the presentation of a number of topics from multiple perspectives. For example, the rigorous theoretical foundations of thermal conductivity formulas derived from the equilibrium-based, fluctuationdissipation theory presented in Chapter 2 are complemented by structure/problem-specific perspectives presented in Chapter 3, the application of the theory to molecular dynamics simulations presented Chapter 6, and to the phonon-level description of thermal conduction based on the Boltzmann transport equation in Chapter 5. For molecular-level simulation practitioners, Chapters 7 and 8 provide an introduction to major non-equilibrium methods, i.e., methods employing macroscopic heat flux and temperature gradients and relying directly on Fourier's law of diffusive heat conduction. Chapter 9 completes the presentation of atomic-level modeling and calculation tools with a focus on direct phonon lifetime determination and vibrational analysis of complex, nonperiodic systems. For those practicing or contemplating research in modeling and simulations of phonon-based thermal transport in complex structure materials, the first part of the book provides

a one-stop store for all major state-of-the-art tools and concepts they need.

The second part of the book focuses on experimental synthesis, the processing and characterization of complex nanostructure, and porous and amorphous material and their composites. Amorphization via ion irradiation is the subject of Chapter 11, while electrochemical etching-based synthesis of similar materials is described in Chapter 12. The following three chapters focus on different processing methods such as annealing-based recrystallization, mechanical-based ball milling-induced nanostructuring and amorphization, and laser processing. Finally, Chapters 17 and 18 introduce modern techniques for thermal transport characterization, allowing for the completion of a concept of structure thermal property relationship determination with the synergistic approach based on theory, modeling, simulations, and experiments as described comprehensively throughout this book.

Dr. Pawel Keblinski

Materials Science and Engineering Department Rensselaer Polytechnic Institute Troy, New York, USA