Self-Organized 3D Tissue Patterns

Fundamentals, Design, and Experiments

Xiaolu Zhu | Zheng Wang

Self-Organized 3D Tissue Patterns

Self-Organized 3D Tissue Patterns

Fundamentals, Design, and Experiments

Xiaolu Zhu Zheng Wang

Published by

Jenny Stanford Publishing Pte. Ltd. Level 34, Centennial Tower 3 Temasek Avenue Singapore 039190

Email: editorial@jennystanford.com Web: www.jennystanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Self-Organized 3D Tissue Patterns: Fundamentals, Design, and Experiments

Copyright © 2022 Jenny Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4877-77-0 (Hardcover) ISBN 978-1-003-18039-5 (eBook)

Contents

Pr	Preface			
1.	Introduction			
	1.1	Resea	rch in Tissue Engineering	1
	1.2	Tradit	ional Tissue Grafting and Typical Cell	
		Impla	ntation for Skin or Cartilage	4
	1.3	Synth	etic Structured Scaffold and Decellularized	
		3D Ma	itrices	6
	1.4		e and Organoid Morphogenesis by Regulated	
		Self-0	rganization Process	8
2.	Fun	damen	tals of Three-Dimensional Cell Culture	
	in Hydrogels			17
	2.1	Introd	luction	17
	2.2	Experimental Methods for 3D Culture of Cells		19
		2.2.1	Cell Culture	20
		2.2.2	Hyaluronic Acid Modification	20
		2.2.3	VMCs-Laden HA Hydrogel Formation	21
		2.2.4	Fixation and Fluorescent Staining	22
		2.2.5	3D Visualization Using Selective	
			Plane Illumination Microscopy	22
		2.2.6	Measuring Cell Proliferation	
			in 3D HA Hydrogels	23
	2.3	2.3 Results and Discussion for 3D Microtissue		
		Patter	ns Emerged in HA Hydrogels	23
		2.3.1	Generation of 3D Structures Composed	
			of Aggregated Cells	23
		2.3.2	Influence of Component Proportion on	
			Self-Organization of VMCs in HA Hydrogel	27

vi Contents

		2.3.3	Cytotoxicity of Modified Dextran Hydrogels and Cellular Proliferation	
			measurement in Hydrogels	28
		2.3.4	Discussion on Self-Organization of Cells	
		_	in 3D Hydrogel with Quantitatively	
			Tunable Components	32
	2.4	Summ	lary	33
3.	Thu		ansianal Dattarns of Tissues Emersing	
5.		lydroge	ensional Patterns of Tissues Emerging	39
		Backg		39
		-	imental Methods for 3D Culture of Cells	41
	5.2	•	Cell Culture	41
			HA Modification	42
			VMCs-Laden HA Hydrogel Formation	42
			Fixation and Fluorescent Staining	43
		3.2.5	0	15
		01210	in 3D HA Hydrogels	43
		3.2.6	3D Visualization Using Selective	_
			Plane Illumination Microscopy	43
	3.3	Result	ts and Discussion for 3D Microtissue Patterns	
		Emerg	Emerging in Ha Hydrogels	
		3.3.1	3D Pattern Formation of VMCs in	
			Modified HA Hydrogel	44
		3.3.2	Generation of Varying Morphologies	
			of 3D Structures Composed	
			of Aggregated Cells	46
		3.3.3	Mapping Combined Effects	= 0
	2.4	0	of Exogenous Factors	52
	3.4	Summ	lary	53
4.	Con	structi	ng 3D Tissue Structures via Cellular	
			bly at Patterned Interfaces	

inside Hydrogel			59	
4.1	Backg	round		
4.2	Materials and Methods		61	
	4.2.1	Cell Culture	61	
	4.2.2	HA Modification	61	

		4.2.3	HA Hydrogel Synthesis	62	
		4.2.4	Rheology Measurement of Hydrogel	62	
		4.2.5	Fabrication of 2D Interface	63	
		4.2.6	3D Imaging	64	
	4.3	Experiment Results		64	
		4.3.1	Multicellular Network and Branching		
			Structures inside HA Hydrogels	64	
		4.3.2	Multicellular Network inside HA Hydroge	ls with	
			Low Stiffness and Higher Stiffness	67	
		4.3.3	Controllable Large-Dimensional		
			Tube Formation at Interface of		
			High-Stiffness and Low-Stiffness Gels	68	
	4.4	Summ	ary	72	
-	Ma	dalina C	allulay Colf Accomply at Dattamad		
э.		Modeling Cellular Self-Assembly at Patterned Interfaces inside Hydrogel via Turing's			
			iffusion Frame	77	
		Introd		77	
	5.2	Theore	etical Model	80	
	5.3		ition Results and Discussion	83	
	5.4	Summ	ary	91	
6.		-	ular Behaviors during		
		-	zation of Cells in Hydrogel		
	by Changing Inner Nano-Structure of Hydrogel			95	
		Introd		95	
	6.2		als and Methods	98	
		6.2.1	3D Dextran Hydrogel	98	
		6.2.2	*	99	
		6.2.3		100	
		6.2.4	RGD-Clustered Hydrogel Fabrication	100	
		6.2.5	SEM Imaging	101	
		6.2.6	Rheology Measurement	102	
		6.2.7	Live/Dead Test	102	
		6.2.8	Bright Field Imaging	103	
		6.2.9	F-actin Staining	103	
		6.2.10	DAPI Staining	103	

	6.2.11	LSCM Imaging	104
	6.2.12	Nucleus Circularity Measuring Method	104
	6.2.13	Gel Degradation	104
	6.2.14	Data Statistics	105
6.3	Results		
	6.3.1	Microgeometry and Rheological	
		Properties of Dextran Hydrogel	105
	6.3.2	Cellular Morphology and Behaviors	
		in RGD-Homogenous Dextran Hydrogel	106
	6.3.3	Cell-Adhesive Efficacy of RGD	
		Clustering Dextran Hydrogels	111
	6.3.4	Cell Spreading, Elongation, and	
		Connection in RGD-Clustering	
		Dextran Hydrogels	113
6.4	Discussion		
	6.4.1	Fundamental Comparison on Cellular	
		Morphology and Behaviors in 2D	
		Petri Dishes and 3D Dextran Hydrogel	116
	6.4.2	Cellular Morphology and Behaviors in	
		RGD-Homogenous and RGD-Clustered	110
	<i></i>	Dextran Hydrogel	118
	6.4.3	Local Stiffness Variation Influenced	100
	C A A	by RGD Distributions in Hydrogels	120
	6.4.4	Significance of Cellular Behaviors	
		Influenced by Averaged Concentration of RGD in Hydrogels	121
	6.4.5		121
	0.4.5	Effect of Stiffness-Heterogeneity with Large Fluctuation and RGD Clustering	
		Induced Stiffness-Heterogeneity	
		with Small Variation	123
6.5	Summary		123
0.0	Juiiiii	ur y	147
	I. J.		104
	Index		131

Preface

Tissue engineering applies principles and methods from engineering and life sciences to create artificial constructs to direct tissue regeneration or enhance tissues and organs. Structured scaffolds are widely useful for providing structures supporting cells to form 3D tissue. However, it is non-trivial to develop a scheme, which can robustly guide cells to self-organize into a tissue with desired 3D spatial structures. The self-organization of cells is a natural process that occurs in various biological bodies. In the field of engineering, we may expect that the process of self-organization can be rationally predicted and controlled. Moreover, it will be better that the selforganization of a huge number of cells can be governed by a mathematical framework.

This book first introduces the advances in tissue and organ regenerating using diverse technologies from different disciplines (Chapter 1). Then, it focuses on the multicellular or tissue structure formation via self-assembly of cells in 3D hydrogels (Chapter 2 and 3). Based on the hydrogel fabrication technique, the tailored inner interfaces inside hydrogels have been proposed to stimulate the tubular microtissue formation via a self-assembly scheme (Chapter 4), and the corresponding mathematical framework and the simulation model are also presented and discussed (Chapter 5). Furthermore, in order to develop a more elaborate and sophisticated regulating method for tuning the collective cellular behaviors, we also propose a hydrogel system with 3D distribution of clustered compositions, which can tune the multicellular elongations and aggregations (Chapter 6). This book offers the fundamentals and innovative designs for the 3D hydrogel system and discusses the representatively experimental results on the self-organized 3D Tissue patterns.

The authors are grateful for the helpful discussion with Prof. Ting-Hsuan Chen at City University of Hong Kong, Prof. Chih-Ming Ho at the University of California, Los Angeles (UCLA), Prof. Tatiana Segura at Duke University and Prof. Alan Garfinkel and Prof. Yin Tintut at UCLA, while conducting the related projects. We hope this book will be useful for the readers in the interdisciplinary areas of engineering, biology, and life sciences.

> Xiaolu Zhu Zheng Wang Hohai University, China

"This book offers multidisciplinary knowledge and diverse approaches for constructing 3D multicellular patterns. It also provides an easy access to the related multidisciplinary fundamentals, design strategies, and experimental procedures for professional researchers and students."

Prof. Xiuli Cong Zhejiang Hospital, China

"I am thrilled to see the authors putting their enthusiasm and professionalism in the research of 3D selforganized tissues using both experimental and simulation techniques. More importantly, the research is finally organized in such a smooth and logical way as a book. I recommend this book as a useful reference to researchers in both academia and industry, even students who are passionate about tissue engineering."

Dr. Kesong Hu Applied Materials, Inc., USA

"This book focuses on the fascinating self-organizing approaches that integrate multidisciplinary knowledge for constructing 3D cellular patterns. It provides interesting and rich information for the professional researchers in the related fields."

Prof. Xianting Ding Shanghai Jiao Tong University, China

Therapies for regenerating damaged tissue and organs have been attracting much attention. In order to efficiently regenerate the functions of living tissue and organs, diverse attempts have been made to utilize scaffolds to "mold" artificial tissue structures. However, the structural complexity of the reconstituted tissue is limited by the mechanical precision of scaffolds, which still causes problems arising from degradation, immunogenic reactions, and so forth. It is also being realized that ultimately the best approach might be to rely on the innate self-organizing properties of cells and the regenerative capability of the organism itself.

This book investigates the 3D-pattern formation and evolution mechanism in multipotent cells embedded in 3D semi-synthetic hydrogels and the control methodology for self-organized patterns. The authors theoretically and experimentally demonstrate several types of topological 3D-pattern formation by cells in a 3D matrix in vitro, which can be modeled and predicted by mathematical models based on the reaction-diffusion dynamics of various chemical, physical, and mechanical cues. The study, focused on the 3D pattern formation of cells, provides (i) a unique perspective for understanding the self-organized 3D tissue structures based on Turing instability, (ii) the scheme for rationally controlling the cellular self-organization via exogenous factors or tailored inner interfaces inside hydrogels, and (iii) the elaborate and sophisticated regulating method for tuning collective cellular behaviors in 3D matrices.

Xiaolu Zhu is associate professor at Hohai University, China. He graduated from Southeast University, China, in 2007 and obtained a PhD in 2014. He worked as a research scholar at the University of California, Los Angeles, from 2011 to 2013. His work is currently focused on understanding and controlling self-organized 3D patterns of cells and hydrogel-based biofabrication.

Zheng Wang is currently a master's student at the University of Hong Kong. He obtained his bachelor's degree from Hohai University in 2020. He is working on the development of the applications of hydrogels in the regulation of cellular behaviors and on the quantification of the relationships between cellular behaviors and the physical properties of the extracellular matrix.

