
November 19, 2020 11:1 JSP Book - 9in x 6in 13-Yi-Long-Index

Index

aerosol 220, 230

ALD, see atomic layer deposition

amide groups 128–129

APCVD, see atmospheric pressure

chemical vapor deposition

APCVD reactor 239, 241–243, 245

APCVD system 218, 222, 224, 226,

236

argon 11, 218, 282, 285

atmospheric pressure 218, 237,

275, 290, 333

atmospheric pressure chemical

vapor deposition (APCVD)

218, 221, 226, 229, 232–234,

236, 240

atomic configurations 48–49, 54

atomic layer deposition (ALD)

144, 221, 230–232, 235, 365

atomic substitution 36, 38–39, 54

bandgap 9, 19, 23, 35, 37–39, 41,

43, 50

band structures 9, 41, 46,
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362, 368, 375–377
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structural phase transition 44,
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temperature-dependence

resistance 271
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151, 155
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theoretical simulations 36, 53–54,

69, 71, 75
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307, 363, 366
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thermochromic performance
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transition temperature 40, 48,

221, 256, 292–294, 304, 307,

336–337, 341–342, 344,

346–348, 375, 390

critical 346–347

critical phase 347, 355

reduced phase 109, 190

transmission spectra 293,

295–296, 346

transmittance 12, 15, 17–20, 69,

71–72, 106, 112–114,

161–163, 170, 202–204,

305–307, 335–336, 339–343,

346–347, 366–367

changes 87, 158, 344
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simulated spectra 72

temperature-dependent 195,
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valleys 144, 153
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transparent materials 20, 165

vanadium 8–9, 222, 230, 257–259,

261–265, 267–268, 272, 276,

280–281, 285, 287, 298, 306,

380–381, 383

oxidation of 290

alkoxides 332, 338, 355

vanadium dioxide 1, 3, 5, 23,

123–124, 181, 284, 361, 373,

379

vanadium films 299

vanadium metal 298, 300

vanadium oxide films 276,

290–291

vanadium oxides 229, 252–253,

287, 291, 306, 332, 362, 380

vanadium source 126, 189, 221,

223–224

vanadium target 256, 276

visible light 1, 3–4, 53, 89, 92–93,

127, 142, 158, 307, 341,
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visible light transmittance 1, 113,
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visible transmittance 37, 39, 131,
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387
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X-ray diffraction (XRD) 84, 271,
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XRD, see X-ray diffraction
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