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two-photon SOLNET 171,

173–176, 178, 182–183, 185,
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38, 70, 77–79, 167, 249–250,
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wavefunction 339, 347
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wavefunction shapes 338–339,
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waveguide 88, 94, 96–97,

154–155, 187, 229–230, 233,

237–239, 290–292, 302–304,

306–308, 310–318, 321–324,

327–329, 334
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104, 125, 127–129, 132–133,

170, 178, 180, 230, 292

waveguide film 77, 85, 283, 285,
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52
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64–65
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waveguide lenses 104, 108, 122,

142–143, 146, 149, 151, 197
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electric-field-induced 146–147
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waveguide-type thin-film artificial

photosynthesis cell 296–297

waveguide-type thin-film solar

cell 265–267, 269, 273,
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wavelength division multiplexing

(WDM) 3, 10–11, 37–39, 115,

157, 236, 321, 323

wavelength filters 29, 38–39, 83,

88, 125–126, 169–170, 178,

230, 241, 243, 265, 275–276,

296
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multiplexing
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257
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168–176, 178–185, 188–190,

193, 195, 197, 202, 205–214,
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