Local Gradient Theory for Dielectrics Fundamentals and Applications

Olha Hrytsyna | Vasyl Kondrat

Local Gradient Theory for Dielectrics

Local Gradient Theory for Dielectrics

Fundamentals and Applications

Olha Hrytsyna Vasyl Kondrat

Published by

Jenny Stanford Publishing Pte. Ltd. Level 34, Centennial Tower 3 Temasek Avenue Singapore 039190

Email: editorial@jennystanford.com Web: www.jennystanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Local Gradient Theory for Dielectrics: Fundamentals and Applications

Copyright © 2020 by Jenny Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4800-62-4 (Hardcover) ISBN 978-1-003-00686-2 (eBook) To the brilliant memory of Yaroslav Burak, a famous Ukrainian scientist

Contents

Preface

			SECTION I	EQUATIONS
1.	A Revi	ew of the	e Gradient an	d Nonlocal Theories of
	Electro	othermoe	elastic Polariz	ed Media
	1.1	Introdu	iction	
	1.2	Nonloc	al Theories o	f Dielectrics
	1.3	Gradie	nt-Type Theo	ries of Dielectrics
		1.3.1	General Ch	aracteristics
		1.3.2	Polar and M	licropolar Electroelastic
			Continuum	1
		1.3.3	Microstreto	ch Continuum
		1.3.4	Micromorp	hic Continuum
		1.3.5	Strain Grad	ient Theories of Dielectrics:
			Flexoelectr	ic Effect

		1.3.6	Polarization Gradient Theory of		
			Dielectrics	27	
		1.3.7	Theory of Dielectrics with Electric		
			Quadrupole or Electric Field Gradient	33	
	1.4	Short D	Discussion	37	
2.			ic Foundations of Local Gradient		
			mechanics of Polarized		
	Non-ferromagnetic Solids Taking the Local Mass				
	Displa	isplacement into Account			
	2.1	Introdu	iction	40	
	2.2	Basic K	sic Kinematic Relations		
	2.3			46	
	2.4			47	
		2.4.1	Maxwell's Equations	47	
		2.4.2	Balance Law of Electromagnetic		
			Field Energy	51	

xiii

3

4

9

11 11

13 17 18

23

2.5	Local Mass Displacement: Balance Equation				
	of Indu	ced Mass	52		
2.6	Conservation of Energy for a System				
	"Materi	al Body–Electromagnetic Field"	54		
2.7	Conservation Laws of Mass and Momentum				
2.8	Symmetry of the Stress Tensor				
2.9	Gibbs Equation and Entropy Production				
2.10	Constitutive Equations				
	2.10.1	General Form	61		
	2.10.2	Linear Constitutive Equations for			
		Anisotropic Media	62		
	2.10.3	Linear Constitutive Equations for			
		Isotropic Media	66		
	2.10.4	Kinetic Relations	69		
2.11	Linear	Set of Governing Equations in Terms of			
	Displac	ement	71		
	2.11.1	Governing Equations	71		
	2.11.2	Governing Equations for Ideal			
		Dielectrics	75		
	2.11.3	Governing Equations for Stationary			
		State	78		
	2.11.4	Isothermal Approximation	79		
2.12	Linear	Set of Governing Equations			
	in Term	ns of Stress Tensor	80		
	2.12.1	Beltrami-Michell Equations.			
		Governing Equations	80		
	2.12.2	Ideal Dielectrics	83		
2.13	Potential Methods: Mechanical and				
	Electromagnetic Interaction in Isotropic				
	Dielectrics 84				
	2.13.1	8			
		Displacement-Potential Relations	84		
	2.13.2	8	85		
	2.13.3	8	89		
	2.13.4	Coupling Factors between			
		Electromechanical Fields and Local			
		Mass Displacement	90		
2.14		Boundary-Value Problems of Local			
	Gradier	nt Electrothermoelasticity	93		

	2.15	Unique	ness Theorem	98
	2.16	Recipro	ocity Theorem	104
	2.17	Comparison of the Local Gradient Theory of		
		Dielectrics with Generalized Theories		
		2.17.1	Constitutive Equations of Integral	
			Туре	111
		2.17.2	Dependence of Constitutive	
			Equations on Gradients of Strain	
			Tensor, Temperature, and Electric	
			Field	114
3.	Genera	alized Loo	cal Gradient Theories of Dielectrics	117
	3.1	Local G	radient Theory of Thermoelastic	
		Polariz	ed Media: Tensor-Like Representation	
		of Para	meters Related to the Local Mass	
		Displac	ement	118
		3.1.1	Mass Balance Equation	118
		3.1.2	Energy Balance Equation	119
		3.1.3	Constitutive Equations	122
		3.1.4	Governing Equations for Isotropic	
			Elastic Medium	125
	3.2	Local Gradient Theory of Dielectrics Taking		
		into Ac	count the Inertia and Irreversibility of	
		Local M	lass Displacement and Polarization	127
		3.2.1	Inertia of Local Mass Displacement	
			and Polarization	128
		3.2.2	Irreversibility of the Local Mass	
			Displacement and Polarization	130
		3.2.3	Constitutive Equations	132
		3.2.4	Constitutive Equations for Ideal	
			Dielectrics	136
		3.2.5	Governing Equations for Ideal	
			Dielectrics	137
		3.2.6	Governing Equations when	
			Neglecting the Inertia of	
			Polarization and Local Mass	
			Displacement	143

x Contents

	3.2.7	Governing Equations when	
		Neglecting the Dissipation of	
		Polarization and Local Mass	
		Displacement	146
	3.2.8	Generalized Lorentz Gauge Condition	149
3.3	Rheolo	gical Medium with Fading Memory	151
	3.3.1	Energy Balance Equation	151
	3.3.2	Constitutive Equations	152
3.4	Local (Gradient Theory of Dielectrics with	
	Electri	c Quadrupoles	154
	3.4.1	Electromagnetic Field Equations	154
	3.4.2	Energy Balance Equation	156
	3.4.3	Gibbs Equation and Entropy	
		Production: Constitutive Equations	158
	3.4.4	Governing Equations when	
		Neglecting the Dissipation of Local	
		Mass Displacement	163
I. Near-S	Surface II	SECTION II APPLICATIONS	
. Near-S Fields	Surface II		169
	Surface	nhomogeneity of Electromechanical e Energy of Deformation and	169
Fields		nhomogeneity of Electromechanical e Energy of Deformation and	169 170
Fields	Surface	nhomogeneity of Electromechanical e Energy of Deformation and cation Tensor-Like Representation of	
Fields	Surface Polariz	nhomogeneity of Electromechanical e Energy of Deformation and cation	
Fields	Surface Polariz	nhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement	170
Fields	Surface Polariz 4.1.1 4.1.2	nhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case	170 170
Fields	Surface Polariz 4.1.1	nhomogeneity of Electromechanical e Energy of Deformation and cation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric	170 170 173
Fields	Surface Polariz 4.1.1 4.1.2 4.1.3	nhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles	170 170 173
Fields	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic	nhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles Half-Space with Free Surfaces:	170 170 173
Fields 4.1	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic	nhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles	170 170 173 174
Fields 4.1	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic Near-S	hhomogeneity of Electromechanical e Energy of Deformation and cation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles Half-Space with Free Surfaces: urface Inhomogeneity of omechanical Fields	170 170 173 174 175
Fields 4.1	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic Near-S Electro 4.2.1	nhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles Half-Space with Free Surfaces: urface Inhomogeneity of omechanical Fields Problem Formulation	170 170 173 174 175 176
Fields 4.1	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic Near-S Electro 4.2.1 4.2.2	nhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles Half-Space with Free Surfaces: urface Inhomogeneity of omechanical Fields Problem Formulation Problem Solution and Its Analysis	170 170 173 174 175 176
Fields 4.1	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic Near-S Electro 4.2.1	hhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles Half-Space with Free Surfaces: urface Inhomogeneity of omechanical Fields Problem Formulation Problem Solution and Its Analysis Surface Energy of Deformation and	170 170 173 174 175 176 177
Fields 4.1	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic Near-S Electro 4.2.1 4.2.2 4.2.3	hhomogeneity of Electromechanical e Energy of Deformation and cation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles Half-Space with Free Surfaces: urface Inhomogeneity of omechanical Fields Problem Formulation Problem Solution and Its Analysis Surface Energy of Deformation and Polarization and Surface Tension	170 170 173 174 175 176
Fields 4.1	Surface Polariz 4.1.1 4.1.2 4.1.3 Elastic Near-S Electro 4.2.1 4.2.2	hhomogeneity of Electromechanical e Energy of Deformation and tation Tensor-Like Representation of Parameters Related to the Local Mass Displacement Special Case Deformable Media with Electric Quadrupoles Half-Space with Free Surfaces: urface Inhomogeneity of omechanical Fields Problem Formulation Problem Solution and Its Analysis Surface Energy of Deformation and	170 170 173 174 175 176 177

4.3	Dielectric Layer with the Free Surface:				
	Size Ef	fect	185		
	4.3.1	Problem Formulation	185		
	4.3.2	Problem Solution and Its Analysis	187		
	4.3.3	Size Effect of Surface Tension and			
		Surface Energy of Deformation and			
		Polarization	190		
	4.3.4	Evaluation of Additional Nonlinear			
		Mass Force in Balance of Momentum	191		
4.4	Mead's	s Anomaly	194		
	4.4.1	Problem Formulation	194		
	4.4.2	Problem Solution and Its Analysis	196		
4.5	Layer	with Clamped boundaries: Disjoining			
	Pressu	re	198		
4.6	Forma	tion of Near-Surface Inhomogeneity			
	in an Iı	nfinite Layer	201		
	4.6.1	Problem Formulation	201		
	4.6.2	Problem Solution and Its Analysis	202		
	4.6.3	Evaluation of the Lateral Force	204		
4.7	Solids	of Cylindrical Geometry: Effect of			
	Surface	e Curvature	207		
	4.7.1	Problem Formulation	207		
	4.7.2	Infinite Cylinder	208		
	4.7.3	Infinite Medium with Cylindrical			
		Cavity	212		
	4.7.4	Effect of Surface Curvature on			
		Surface Energy of Deformation			
		and Polarization	214		
4.8	Effect	of Heating on the Near-Surface			
	Inhomogeneity of Electromechanical Fields:				
	Piroele	ectric and Thermopolarization Effects	216		
	4.8.1	Problem Formulation	216		
	4.8.2	Problem Solution and Its Analysis	220		
4.9	Electro	ostatic Potential of a Point Charge and			
	a Line	Source	231		
	4.9.1	Effect of Local Mass Displacement			
		on the Potential Field of a Point			
		Charge	231		

	4.9.2	Effect of Electric Quadrupoles on			
		the Potential Field of a Line Source	233		
	-	monic Wave Processes	237		
5.1	Plane Harmonic Wave in an Infinite Medium:				
	-	sion of an Elastic Wave	238		
	5.1.1	Problem Formulation	238		
	5.1.2		239		
5.2	5.2 Effect of Polarization Inertia on the				
	Propagation of Plane Waves: Dispersion of an				
	Electro	omagnetic Wave	242		
	5.2.1	Governing Set of Equations:			
		Problem Formulation	242		
	5.2.2	Effect of Polarization Inertia on the			
		Propagation of Plane and			
		Electromagnetic Waves	244		
5.3	Electro	omechanical Vibrations of			
	Centrosymmetric Cubic Crystal Layers:				
	Conver	rse Piezoelectric Effect	249		
	5.3.1	Problem Formulation	249		
	5.3.2	Problem Solution and Its Analysis	250		
	5.3.3	Comparison to the Mindlin Gradient			
		Theory of Dielectrics	255		
5.4	Rayleig	gh Waves in a Piezoelectric Half-Space:			
	Direct	Piezoelectric Effect	258		
	5.4.1	Problem Formulation	259		
	5.4.2	Problem Solution and Its Analysis	262		
5.5	Surface	e SH Waves	271		
	5.5.1	Problem Formulation	271		
	5.5.2	Problem Solution and Its Analysis	273		
Bibliography	1		283		
Index			303		

Preface

Experimental studies in the second half of the twentieth century revealed some phenomena and effects that cannot be appropriately described within the classical theory. Among such problems, we can mention the near-surface and interface inhomogeneity of electromechanical fields, size effects of mechanical and electrical characteristics of a material, nonlinear dependence of the inverse capacitance of thin dielectric films on their thickness, high-frequency dispersion of longitudinal elastic waves, propagation of antiplane surface shear waves (SH waves) in isotropic solids, linear response of polarization of centrosymmetric cubic crystals to the temperature gradient (thermopolarization effect) as well as to the stress gradient (flexoelectric effect), the emergence of a bound electric charge on the free surfaces of dielectric bodies, etc. (Abazari et al. 2015; Axe et al. 1970; Boukai et al. 2008; Bullen and Bolt 1985; Catalan et al. 2004, 2005; Kraut 1971; Li et al. 2003; Ma and Cross 2001a; Mead 1961; Rafikov and Savinov 1994; Tagantsev 1987; Tang and Alici 2011a, 2011b; Zubko et al. 2007). Solutions to these problems call for the development of new generalized mathematical models of dielectrics that take into account the inhomogeneity of the state of physically small elements of the body and describe their physical properties more scrupulously and accurately.

An extension of the classical field theory toward the abovementioned mathematical models became possible due to an intensive development of new technologies, in particular, nanotechnologies. Here we should mention an extensive utilization and design of new composite and porous materials, including nanocomposite and nanoporous ones, the engineering of microscale/ nanoscale structures, nanoelectromechanical devices, sensors, and actuators. In many cases, such theories allow for avoiding the singularities in solutions to problems with dislocations, cracks, line sources, point loads and charges, etc.

There are several approaches to constructing extended theories of thermoelastic polarized solids. One group of theories

considers the additional degrees of freedom (i.e., microrotations, microdeformations, etc.) for material points in order to take into account the contribution of the microstructure changes to the macroscopic behavior of a body. In such a way, since the 1960s, the fundamentals of micromorphic, microstretch, micropolar continua theories of dielectrics have developed (Dixon and Eringen 1965a, 1965b; Demiray and Eringen 1973; Eringen 1999, 2004; Lee et al. 2004). Nonlocal and gradient-type theories compose another group of extended theories of dielectrics. The nonlocal field theory for piezoelectricity with functional constitutive relations was proposed by Eringen (1984, 2002) and Eringen and Kim (1977). The gradient-type theories of dielectrics were developed by allowing the stored energy density to depend on the gradient of some physical quantities, namely, the strain tensor gradient (Kogan 1964), the polarization gradient (Mindlin 1968), or the electric field gradient (Landau and Lifshitz 1984; Yang et al. 2004). Note that the latter theory is similar to the so-called theory with electric quadrupoles because the electric field gradient is a thermodynamic conjugate of the electric quadrupole (Kafadar 1971).

In 1987, Burak proposed a new continuum-thermodynamic approach to the construction of a gradient-type theory of thermoelastic solids. The mentioned approach is based on taking account of non-diffusive and non-convective mass fluxes associated with the changes in the material microstructure. These fluxes were related to the process referred to as the local mass displacement (Burak 1987). By employing this approach, papers (Burak et al. 2007, 2008; Hrytsyna 2017a; Hrytsyna and Kondrat 2018; Hrytsyna and Moroz 2019; Kondrat and Hrytsyna 2012a) present the foundations of a gradient-type theory of the deformation of electrothermoelastic non-ferromagnetic polarized medium. This theory was called the local gradient theory of dielectrics. It is based on the accounting for the local mass displacement and its effect on mechanical, heat, and electromagnetic fields. The present book is concerned with the mathematical and physical aspects of the local gradient theory of dielectrics and its applications.

The book consists of five chapters. A short overview of generalized continuum theories of dielectric media taking account of the nonlocal effects is given in the first chapter. This chapter contains a brief description of the well-known and the most common approaches to the development of such theories within the framework of the continuum description.

In the second chapter, the fundamental concepts and basic relations of the local gradient electrothermomechanics of nonferromagnetic dielectric solid bodies are formulated. It is shown that a gradient-type theory of dielectrics can be formulated by considering the contribution of the mass fluxes caused by changes in the material microstructure. In order to describe the process of local mass displacement, we introduce the corresponding physical quantities and obtain the balance-type equation to which these quantities are subordinated. It is shown that due to the local mass displacement, the gradient-type constitutive relations are obtained. A complete set of equations that include the balance equations, respective physical and geometric relations, as well as the corresponding boundary and jump conditions are formulated. The connection of the constructed theory with some generalized theories of dielectrics is analyzed. It is shown that for the developed theory of dielectrics, the principle of conformity is fulfilled. It means that in the limiting case of neglecting the local mass displacement, the obtained equations coincide with the equations of the classical theory.

In the third chapter, the local gradient theory of dielectrics is generalized by taking into account (i) the tensor-like representation of the parameters related to the local mass displacement, (ii) the irreversibility and inertia of the polarization and local mass displacement, (iii) the rheological properties of a dielectric medium with fading memory, and (iv) the electric quadrupoles. This, in particular, enabled us to obtain a dynamically coupled set of equations of local gradient thermomechanics of polarized medium.

The mathematical models of local gradient electrothermomechanics of non-ferromagnetic polarized solids that are developed in the second and third chapters have become the basis for theoretical studies of near-surface inhomogeneity of coupled fields in dielectrics, for the description of size effects, wave processes, etc. The mentioned investigations compose the fourth and fifth chapters of the book. In these chapters, it is shown that by taking the local mass displacement, its irreversibility and inertia into consideration, the classical continuum theory of thermoelastic dielectrics is extended to accommodate electromechanical interaction in centrosymmetric materials. The theories of polarized solids generalized in such a way make it possible to study the transition modes of the formation of near-surface inhomogeneity of coupled fields in dielectric bodies as well as to investigate the perturbation of mechanical, thermal, and electromagnetic fields due to the effect of rapidly changeable loads. Within the linear approximation, these theories describe a number of experimentally observed phenomena, including the surface, size, flexoelectric, pyroelectric, and thermopolarization effects in isotropic media, anomalous dependence of the capacitance of thin dielectric films on their thickness, the dispersive properties of polarized media, etc. Note that the above phenomena are not explained within the framework of classical theory of dielectrics.

The book is based on the results obtained by the authors over the last 20 years. It should be noted that a certain part of the basic results of this book has been published in a series of papers (Burak et al. 2007, 2008; Burak and Hrytsyna 2011; Chapla et al. 2009; Hrytsyna 2008, 2010, 2011, 2013a, b, c, 2014, 2015, 2016, 2017a, b; Hrytsyna and Kondrat 2018; Hrytsyna and Moroz 2019; Kondrat and Hrytsyna 2009a, b, c, 2010a, b, c, 2011, 2012a, b, c, 2018) as well as presented at a number of international conferences.

In conclusion, we would like to express our gratitude to the people who supported and helped us throughout this project. We would like to express our appreciation to Prof. Yaroslav Burak, our mentor, who initiated these studies and persistently encouraged us to do above researches. He had a great influence on the formation of scientific judgments of both authors of this book.

We also thank Prof. Yuriy Povstenko, Prof. Vasyl Chekurin, and Prof. Yevhen Chaplya for discussions on a number of problems. We are grateful to Prof. Roman Kushnir for support of these investigations. Our special thanks go to Prof. Yuriy Tokovyy for his advice and great help throughout the long process of writing the book.

We wish especially to thank a number of our collaborators in the Centre of Mathematical Modelling and Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, and Institute of Construction and Architecture, Slovak Academy of Sciences, who helped to carry out these researches by the valuable discussions, comments, and advice at seminars and in personal communications. We are grateful to Orest Tsurkovsky for thorough proofreading of the manuscript.

We also thank Jenny Stanford Publishing and, personally, Stanford Chong for the suggestions regarding the preparation and publication of this book.

Last but not least, we would like to express our gratitude to our families and friends. Their encouragement, patience, help, and support have been very important to us.

> Olha Hrytsyna Vasyl Kondrat Autumn 2019