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Experimental studies in the second half of the twentieth century 
revealed some phenomena and effects that cannot be appropriately 
described within the classical theory. Among such problems, we 
can mention the near-surface and interface inhomogeneity of 
electromechanical	 fields,	 size	 effects	 of	 mechanical	 and	 electrical	
characteristics of a material, nonlinear dependence of the inverse 
capacitance	of	thin	dielectric	films	on	their	thickness,	high-frequency	
dispersion of longitudinal elastic waves, propagation of antiplane 
surface shear waves (SH waves) in isotropic solids, linear response 
of polarization of centrosymmetric cubic crystals to the temperature 
gradient (thermopolarization effect) as well as to the stress gradient 
(flexoelectric	effect),	the	emergence	of	a	bound	electric	charge	on	the	
free surfaces of dielectric bodies, etc. (Abazari et al. 2015; Axe et al. 
1970; Boukai et al. 2008; Bullen and Bolt 1985; Catalan et al. 2004, 
2005; Kraut 1971; Li et al. 2003; Ma and Cross 2001a; Mead 1961; 
Rafikov	and	Savinov	1994;	Tagantsev	1987;	Tang	and	Alici	2011a,	
2011b; Zubko et al. 2007). Solutions to these problems call for the 
development of new generalized mathematical models of dielectrics 
that take into account the inhomogeneity of the state of physically 
small elements of the body and describe their physical properties 
more scrupulously and accurately.
	 An	 extension	 of	 the	 classical	 field	 theory	 toward	 the	
abovementioned mathematical models became possible due 
to an intensive development of new technologies, in particular, 
nanotechnologies. Here we should mention an extensive utilization 
and design of new composite and porous materials, including 
nanocomposite and nanoporous ones, the engineering of microscale/
nanoscale structures, nanoelectromechanical devices, sensors, 
and actuators. In many cases, such theories allow for avoiding the 
singularities in solutions to problems with dislocations, cracks, line 
sources, point loads and charges, etc.
 There are several approaches to constructing extended 
theories of thermoelastic polarized solids. One group of theories 
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considers the additional degrees of freedom (i.e., microrotations, 
microdeformations, etc.) for material points in order to take into 
account the contribution of the microstructure changes to the 
macroscopic behavior of a body. In such a way, since the 1960s, the 
fundamentals of micromorphic, microstretch, micropolar continua 
theories of dielectrics have developed (Dixon and Eringen 1965a, 
1965b; Demiray and Eringen 1973; Eringen 1999, 2004; Lee et 
al. 2004). Nonlocal and gradient-type theories compose another 
group	of	extended	theories	of	dielectrics.	The	nonlocal	field	theory	
for piezoelectricity with functional constitutive relations was 
proposed by Eringen (1984, 2002) and Eringen and Kim (1977). The 
gradient-type theories of dielectrics were developed by allowing the 
stored energy density to depend on the gradient of some physical 
quantities, namely, the strain tensor gradient (Kogan 1964), the 
polarization	gradient	(Mindlin	1968),	or	 the	electric	 field	gradient	
(Landau and Lifshitz 1984; Yang et al. 2004). Note that the latter 
theory is similar to the so-called theory with electric quadrupoles 
because	the	electric	field	gradient	is	a	thermodynamic	conjugate	of	
the electric quadrupole (Kafadar 1971).
 In 1987, Burak proposed a new continuum-thermodynamic 
approach to the construction of a gradient-type theory of 
thermoelastic solids. The mentioned approach is based on taking 
account	of	non-diffusive	and	non-convective	mass	fluxes	associated	
with	the	changes	in	the	material	microstructure.	These	fluxes	were	
related to the process referred to as the local mass displacement 
(Burak 1987). By employing this approach, papers (Burak et al. 2007, 
2008; Hrytsyna 2017a; Hrytsyna and Kondrat 2018; Hrytsyna and 
Moroz 2019; Kondrat and Hrytsyna 2012a) present the foundations 
of a gradient-type theory of the deformation of electrothermoelastic 
non-ferromagnetic polarized medium. This theory was called the 
local gradient theory of dielectrics. It is based on the accounting 
for the local mass displacement and its effect on mechanical, heat, 
and	electromagnetic	fields.	The	present	book	is	concerned	with	the	
mathematical and physical aspects of the local gradient theory of 
dielectrics and its applications.
	 The	book	consists	of	five	chapters.	A	short	overview	of	generalized	
continuum theories of dielectric media taking account of the nonlocal 
effects	 is	 given	 in	 the	 first	 chapter.	 This	 chapter	 contains	 a	 brief	
description of the well-known and the most common approaches 
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to the development of such theories within the framework of the 
continuum description.
 In the second chapter, the fundamental concepts and basic 
relations of the local gradient electrothermomechanics of non-
ferromagnetic dielectric solid bodies are formulated. It is shown that 
a gradient-type theory of dielectrics can be formulated by considering 
the	contribution	of	the	mass	fluxes	caused	by	changes	in	the	material	
microstructure. In order to describe the process of local mass 
displacement, we introduce the corresponding physical quantities 
and obtain the balance-type equation to which these quantities are 
subordinated. It is shown that due to the local mass displacement, 
the gradient-type constitutive relations are obtained. A complete set 
of equations that include the balance equations, respective physical 
and geometric relations, as well as the corresponding boundary and 
jump conditions are formulated. The connection of the constructed 
theory with some generalized theories of dielectrics is analyzed. It is 
shown that for the developed theory of dielectrics, the principle of 
conformity	is	fulfilled.	It	means	that	in	the	limiting	case	of	neglecting	
the local mass displacement, the obtained equations coincide with 
the equations of the classical theory.
 In the third chapter, the local gradient theory of dielectrics is  
generalized by taking into account (i) the tensor-like representation 
of the parameters related to the local mass displacement, (ii) 
the irreversibility and inertia of the polarization and local mass 
displacement, (iii) the rheological properties of a dielectric medium 
with fading memory, and (iv) the electric quadrupoles. This, in 
particular, enabled us to obtain a dynamically coupled set of 
equations of local gradient thermomechanics of polarized medium.
 The mathematical models of local gradient electrothermome-
chanics of non-ferromagnetic polarized solids that are developed in 
the second and third chapters have become the basis for theoreti-
cal	studies	of	near-surface	 inhomogeneity	of	coupled	fields	 in	die-
lectrics, for the description of size effects, wave processes, etc. The 
mentioned	investigations	compose	the	fourth	and	fifth	chapters	of	
the book. In these chapters, it is shown that by taking the local mass 
displacement, its irreversibility and inertia into consideration, the 
classical continuum theory of thermoelastic dielectrics is extended 
to accommodate electromechanical interaction in centrosymmetric 
materials. The theories of polarized solids generalized in such a way 
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make it possible to study the transition modes of the formation of 
near-surface	inhomogeneity	of	coupled	fields	in	dielectric	bodies	as	
well as to investigate the perturbation of mechanical, thermal, and 
electromagnetic	fields	due	to	the	effect	of	rapidly	changeable	loads.	
Within the linear approximation, these theories describe a number 
of experimentally observed phenomena, including the surface, size, 
flexoelectric,	pyroelectric,	and	thermopolarization	effects	in	isotrop-
ic media, anomalous dependence of the capacitance of thin dielectric 
films	on	their	thickness,	the	dispersive	properties	of	polarized	me-
dia, etc. Note that the above phenomena are not explained within the 
framework of classical theory of dielectrics.
 The book is based on the results obtained by the authors over 
the last 20 years. It should be noted that a certain part of the basic 
results of this book has been published in a series of papers (Burak 
et al. 2007, 2008; Burak and Hrytsyna 2011; Chapla et al. 2009; 
Hrytsyna 2008, 2010, 2011, 2013a, b, c, 2014, 2015, 2016, 2017a, 
b; Hrytsyna and Kondrat 2018; Hrytsyna and Moroz 2019; Kondrat 
and Hrytsyna 2009a, b, c, 2010a, b, c, 2011, 2012a, b, c, 2018) as well 
as presented at a number of international conferences.
 In conclusion, we would like to express our gratitude to the 
people who supported and helped us throughout this project. We 
would like to express our appreciation to Prof. Yaroslav Burak, our 
mentor, who initiated these studies and persistently encouraged us 
to	do	above	researches.	He	had	a	great	influence	on	the	formation	of	
scientific	judgments	of	both	authors	of	this	book.
 We also thank Prof. Yuriy Povstenko, Prof. Vasyl Chekurin, and 
Prof. Yevhen Chaplya for discussions on a number of problems. We are 
grateful to Prof. Roman Kushnir for support of these investigations. 
Our special thanks go to Prof. Yuriy Tokovyy for his advice and great 
help throughout the long process of writing the book.
 We wish especially to thank a number of our collaborators in 
the Centre of Mathematical Modelling and Pidstryhach Institute 
for Applied Problems of Mechanics and Mathematics, National 
Academy of Sciences of Ukraine, and Institute of Construction and 
Architecture, Slovak Academy of Sciences, who helped to carry out 
these researches by the valuable discussions, comments, and advice 
at seminars and in personal communications.
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 Last but not least, we would like to express our gratitude to 
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support have been very important to us.
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