Index

Abelian group, infinite 247-248 absorption 30-31, 33, 35
absorption coefficient 30,32-35, 38
absorption transitions, induced 12, 35
actinides $145-146,167,171,180$, 182, 185, 192, 194, 196-199, 201, 203-204, 206-209
divalent 202, 209
tetravalent 145, 192, 197-198, 202, 204, 207, 209
trivalent 202, 209
angular momentum 62-63,66, 70-71, 73-76, 81-82, 167, 269, 272
approximation
adiabatic 353-354, 357
linear $118,122,133,159,192$, 197-198, 203-204, 207
band gap $178,389,395,397$, 401-402, 409-411
band structure 397-398, 401-403, 411
electronic 390, 395-396, 403
barycenters 127,164-165, 183-184, 293-294
basis functions 264-266, 268, 272, 278
Ce^{3+} 171, 330-331, 333-335, 395, 406, 409-410, 412-414
Ce^{3+} energy levels 410
CFPs, see crystal field parameters
Clebsch-Gordan coefficients 76-79
coordinates
electron 290, 292
equilibrium 352,354
impurity ion electrons 313
mass-weighted 373,375 , 378-379
normal vibrational 372-373, 375, 377, 379, 381
nuclear 351-352, 354, 357
Coulomb interaction parameters 185, 203
Cr^{3+} 3, 91-92, 371
Cr^{4+} 92, 324,371
crystal field $6,100,138,146,183$, 268, 277, 287-289, 297-298, 303-304, 309, 311, 313, 315, 317, 319, 321-322, 330, 334-335, 337, 392, 400
strong 304-306
tetrahedral 278, 294, 299-302
crystal field calculations 183,370
crystal field effects, microscopic 329, 390-391, 393
crystal field Hamiltonian 310-312, 316-317, 325, 331, 333, 335-336, 398, 412, 414
crystal field interactions 298,337, 412
crystal field parameters (CFPs) 101, 142, 150, 164, 183, 310-311, 316, 325, 329, 331, 335, 398
crystal field-split energy levels 396
crystal field splittings 277, 288, 296, 325, 329, 336, 396, 403-404
crystal field strength 293-294, 298, 303, 305-307, 390, 392, 394
crystal field theory $6,78,279$, 287-288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, $322,324,326,328,330,332$, 334, 336, 338, 390, 396, 398, 403, 410
basic postulates of 287-288, 290, 292, 294, 296, 298, 300, $302,304,306,308,310,312$, 314, 316, 318, 320, 322, 324, $326,328,330,332,334,336$, 338
crystal lattice sites 287, 309-312, 412
crystal lattice vibrations 349,365
CSB crystal 371-372
degeneracy $12,53,66,81$, 274-277, 294
degenerated energy levels 275, 310, 383
density functional theory (DFT) 390, 409
DFT, see density functional theory
DFT-based calculations 402-403
dipole operators 21-22,58, 282-283, 358
electric 57-58, 60, 268, 280-281
doped crystals $6,389,395,397$, 399, 401, 403, 408-409

ECM, see exchange charge model
eigenfunctions 47-48, 71, 274, 293
eigenvalues 47-48, 61, 64, 71, 101, 274, 290, 293, 310, 352-354, 376, 378, 380
eigenvectors $375-376,378,381$

Einstein coefficients 10-13, 24, 34, 38
electromagnetic wave 30,32
electron charge 21,68
electron configurations
conjugate 171,211
core 193-194
excited 180, 412
half-filled 165
identical 138
unfilled 100
electron density $142,164,296$
electron density distribution 55-56
electron orbitals 3,69,312
electron shell
filled 3, 44, 94, 165
unfilled 101, 146, 150, 287
electron-vibrational interaction (EVI) 6, 349-350, 352, 354, 356-358, 360, 362, 364-368, $370,372,374,376,378,380$, 382, 384, 386, 391
electronic configurations 69, 81 , $89,91,99,101,145,147,152$, 164, 166-167, 178, 180-181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 318, 392
electronic energy levels 370, 423
electronic states $11,73,204,354$, 356-358, 360-361, 363-365, 367-368, 382, 391, 409, 414
degenerate 383
excited 354,357-358,361
electronic subsystem 351,353
electrons radial coordinates 142, 147, 150, 183
electrostatic interaction 72, 89, 312
electrostatic matrices 91, 325
electrostatic parameters 101, 122 independent 152
emission $2-3,6,9-11,14-15,34$, 38-39, 43, 59, 175, 177-178, 355-357, 363-366, 395, 412
emission transitions 10,12 , $14-15,19,34-35,178,329$, 356, 361, 364, 366, 408
induced $10-11,13,33,35$
spontaneous 12,34
energy
barycenter 150, 164
electromagnetic field 11-12, 34
electron excitation 367
electronic 354,367,383
potential $47,50,62,68,289$, 350, 352, 373, 376-377, 379-381, 383-384
spin-pairing 305
energy eigenvalue 351
energy level schemes 100,138 , $147,151,167,171-174$, 176-177, 179-180, 211, 292, 323, 392, 401, 403
energy levels calculations 329
energy levels location 87, 171
energy levels splitting 122,138 , 279, 297, 309, 331, 333, 390
degenerated 246, 268
energy splitting 150,184
energy uncertainties 14
$\mathrm{Eu}^{2+} 149,179,182,367,414$
EVI, see electron-vibrational interaction
exchange charge model (ECM)
309, 311, 313, 322, 324-325, 327, 329, 333-334, 336, 392, 394, 396, 412
exchange Coulomb interaction 183-184
excited state lifetime 14,16 , 370-371
excited state parabola 368,370
first-principle and semi-empirical models, combination of 390-414
free ions $43,91,138,150,211$, 309, 337
energy level schemes 145
energy levels of 101,147
full width at half maximum (FWHM) 16, 18, 365, 367
FWHM, see full width at half maximum

Gaussian function 18
Gordan coefficients 77-79
ground state configurations 149, 151, 305
ground state electron configuration 329
ground state parabola 368
group multiplication rule 246-247
group theory 6, 245-246, 248, 250-252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278-281, 284, 287, 310, 326
group theory analysis 279,328

Hamiltonian, free ion 147,151 , 167, 183, 208-211, 412
Hamiltonian parameters 151, 211-213, 216, 219, 222, 225, 228, 231, 234, 237, 240, 414
hydrogen $6,43-46,48,50,52,54$, $56,58,60,62,64-66,95$
hydrogen atom $2,45-47,52-54$, $64-65,67-69,93,95,296,352$
hydrogenic ratios 152,163
impurity ions $6,91,246,267$, 287, 289, 292-293, 297-298, 306, 308-313, 315, 317, 329, $334,349,355,365,370,382$, 389-391, 395-396, 401
energy levels 287,370
inequivalent electrons 81,83
inter-electron interaction 72
interionic separations 306, 334, 413
ionization energies 101,140-142, 150, 166-167
ions
actinide 145-147, 149-150, 166, 175, 179, 181-182
Al^{3+} 389-390, 401
aluminum 323
Ce^{3+} 329-331, 333, 335, 395, 408, 410-412, 414
cerium 409
Co^{2+} 277-278
Cr^{3+} 3, 308, 370-372, 389
Cr^{4+} 279, 322-323, 325-328, 369-370
crystal lattice 91, 287, 296, 313, 367-368
divalent 122, 141, 151, 159, 192, 198, 204, 207
divalent lanthanide 149, 182
Eu^{2+} 366, 412
$\mathrm{Fe}^{5+} 92$
fluorine 329-330, 385
heavy transition metal 99
isoelectronic 91, 149
isovalent 99, 152
Kramers 274, 331
lanthanide 4-6, 100, 146, 179, 182, 404, 406, 414
$\mathrm{Mn}^{4+} 3$
multielectron 288
Ni^{2+} 3-4
Pr $^{3+} 172$
rare earth 1, 9, 43, 67, 99, 145-146, 209, 245, 287, 330, 349, 367, 389, 405, 409, 411-412, 423
tetravalent $118,122,141$, 151-152, 164, 185, 204, 207
Ti^{3+} 295, 390, 401
Tm^{3+} 173-174
transition metal 3,100-101, 277, 367, 385, 397
trivalent lanthanide 5, 149, 182, 411
vanadium 385,397
ions energy levels 309,336-337
irreducible representations 265-268, 274-283, 293-294, 298, 325, 328, 333, 381, 398, 437
characters of 265-267, 269, 278
direct products of 278-279
one-dimensional 266,276

Jahn-Teller effect 383-385
Jahn-Teller stabilization energy 383-385

JJ-coupling 72
Judd-Ofelt (JO) theory 405-406, 408
lanthanides 4-5, 145-146, 164, 167, 171, 180, 185, 192-193, 195, 197-200, 203, 205, 208-209
divalent 201-202, 209
tetravalent $145,167,192$, 197-198, 202-204, 207-209 trivalent 149, 182, 202, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 404, 412
Laplace's equation 49
lasers 1, 3, 5, 41
ligands
charged 295, 355
configurations 370
wave functions 308
Lorentzian function 16
Lorentzian profile 16-18
LS-coupling 72
LS terms 89-90, 93, 211-218, 222-240, 277, 298, 303, 318, 325
free ion 326-327, 330
impurity ion's 287
luminescence $304,362,364$
magnetic dipole operator 280-282, 406
many-electron configurations 6
multielectron configurations 80, 93, 211, 310
energy levels 396
multielectron effects 390,396
nephelauxetic effects 91, 306-309
non-radiative relaxation 173,177, 363, 367-368
fast 41, 361-362
nuclear charge, effective 201-202
nuclear subsystems 351, 354, 367
octahedral crystal field 293-294, 299-302, 304, 307
one-electron Hamiltonians 68
optical materials 1
orbital angular momentum 62-63, 277
orbital doublet 277
orbital momentum 45, 71, 83, 94, 148, 272-274, 277, 318
orbital triplets 277-278,310
oscillator strengths 404-405, 407
overlap integrals 312-313,316, 319, 321-322, 324, 334-335, 413
parameterized calculations 183
Pauli exclusion principle 67,69, 81-82, 95, 98, 304
perturbation operator 21,61 , 280, 290
phonons 358-363,369
photons $3,10-11,14-15,23$
physics, classical 45-46, 70, 73
point symmetry 287,309-311, 412
quantum mechanics $2,14,61-63$, 70-71, 73, 274
quantum numbers 52-54, 58-59, 65-69, 73-74, 76, 81-82, 86, 89, 94-95, 97, 148, 216-239, 272, 290-291, 312, 318
magnetic $53,65,87,290,317$, 425, 429, 437
orbital $59,63,65,69,73$, 81-82, 84, 98, 142, 164, 317 principal 52-53, 65, 69, 81-82, 95, 98, 142, 164

Rabi oscillations 19, 21, 23, 25, 27, 29
Racah-Wigner algebra 148
radiation 9-10, 12-14, 16-18, $20-22,24,26,28,30,32$, 34-41
absorption of $9,30,34,37,39$
electromagnetic 10,38
radiation frequency $13,17,35$
radiation intensity $34-35,39$
radiative lifetimes $370,405,408$
radiative transition rates 407
Rhys factor 357-360, 362, 365, 369, 391

Schrödinger equation 46-47, 49, $51,53,55,61,67,69,274,289$, 349, 352, 354
secular determinant 293, 374, 377
selection rules $57,59,279$, 281-282, 327, 329
semi-empirical models 389-390, $392,394,396,398,400,402$, $404,406,408,410,412,414$
Slater integrals 87, 89, 91
Slater parameters 101, 150, 152, $159,183,185,192,198,204$, 207
spectra multielectron atoms 70
trivalent lanthanide ions 182
spin-doublet states 81,278
spin momentum $53,63,65-66$, 79-81, 94, 272, 277
spin-singlet states $81,174,304$, 306, 327
spin-triplet states 83,327
Stokes shift 364-367, 391, 394

Tanabe-Sugano diagrams 298-299, 301, 303
Ti^{3+} states 402-403
transition metal ions salts 100
transition probability, non-
radiative 369
transitions
absorption $9,12,14,33,39$, 307, 358-362, 364, 405
absorption/emission 3,10-11, 13, 366
$\mathrm{Ce}^{3+} 410$
collision-induced 39
electric dipole 57,59-60, 281, 358, 404-405
electronic 100, 146, 357, 404-405, 411
induced 11, 34, 41
magnetic dipole 282, 327-328, 405, 407
non-radiative 11,367-371
radiative $41,368,370,407-408$
spin-allowed 86, 184, 303-304
spin-forbidden 86,184 , 303-304, 308-309
spontaneous 12,43
unit tensor operator 317-318, 405
vibrational levels 354, 356, 358, 361-363, 368
vibrational states 355,367
wave functions
electron 292, 351
hydrogen 54
one-electron 86-87, 317
radial $53,142,152,164,313$
single-electron 272
two-electron 86
vibrational 358
Wigner 3j-symbols 76-77
Wigner 6j-symbols 328
Wigner-Eckart theorem 317
$\mathrm{YAlO}_{3} 4,335,408$
YAlO_{3} crystals 408
YAM 410-411
YAP, see yttrium aluminum perovskite
yttrium aluminum perovskite
(YAP) 335, 408-410, 413
zero-phonon line (ZPL) 358-359, 364
$\mathrm{ZnAl}_{2} \mathrm{~S}_{4}$ 397-401
ZPL, see zero-phonon line
ZPL energy 361, 363, 366-367
ZPL position 364-365, 367
" A great book covering the theoretical aspects of optical and luminescence properties of transition metals and lanthanides. Starting with the bachelor-level quantum physics to describe free transition metal and lanthanide ions, it covers the basics of crystal field theory, group theory, and the vibrating crystalline environment. The authors manage to keep the book at the graduate student level, making it accessible to the non-theorist and very well-suited for the interpretation and analysis of experimental data."

Prof. Pieter Dorenbos Delft University of Technology, The Netherlands

This book describes in detail the main concepts of theoretical spectroscopy of transition metal and rare earth ions. It shows how the energy levels of different electron configurations are formed and calculated for the ions in a free state and in crystals, how group theory can help in solving main spectroscopic problems, and how the modern DFT-based methods of calculations of electronic structure can be combined with the semi-empirical crystal field models. The style of presentation makes the book helpful for a wide audience ranging from graduate students to experienced researchers.

Mikhail G. Brik received his PhD from Kuban State University (Russia) in 1995 and his DSc (habilitation) from the Institute of Physics, Polish Academy of Sciences (Poland) in 2012. Since 2007 he is a professor at the Institute of Physics, University of Tartu, Estonia. Before that, he worked at Kyoto University (Japan) from 2003 to 2007, Weizmann Institute of Science (Israel) in 2002, Asmara University (Eritrea) from 2000 to 2001, and Kuban State University from 1995 to 2000. He is also a distinguished visiting professor at Chongqing University of Posts and Telecommunications (China) and Professor at Jan Długosz University (Poland). Since 2015 he serves as one of the editors of Optical Materials (Elsevier). Prof. Brik's scientific interests cover theoretical spectroscopy of transition metal and rare earth ions in optical materials, crystal field theory, and ab initio calculations of the physical properties of pure and doped functional compounds. He is a coeditor of two books and author of 12 book chapters and about 390 papers in international journals. According to Google Scholar (November 2019), he has more than 7500 citations with h index 41. He received the Dragomir Hurmuzescu Award of Romanian Academy in 2006 and the State Prize of the Republic of Estonia in the field of exact sciences in 2013. In 2018 he received the state professor title from the President of Poland.

Chong-Geng Ma received his PhD from University of Science and Technology of China (Hefei, China) in 2008. He has spent three years (2010-2013) as a postdoctoral researcher in Tartu (under the supervision of Prof. Brik). A specialist in crystal field theory and ab initio calculations, he has published one chapter in a book and more than 75 papers in international journals, which attracted more than 1600 citations. His h index is 20 according to the database of Web of Science (November 2019). Currently he is a full professor at Chongqing University of Posts and Telecommunications (Chongqing, China) and a guest professor at Institute of Rare-Metal, Guangdong Academy of Sciences (Guangdong, China) as well. In 2018 he received the third prize in Chongqing Natural Science awards as the principal investigator.

