
Columnar Structures of Spheres

Columnar Structures of Spheres Fundamentals and Applications

Jens Winkelmann Ho-Kei Chan

Published by

Jenny Stanford Publishing Pte. Ltd. 101 Thomson Road #06-01, United Square Singapore 307591

Email: editorial@jennystanford.com Web: www.jennystanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Columnar Structures of Spheres: Fundamentals and Applications

Copyright © 2023 Jenny Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4669-48-1 (Hardcover) ISBN 978-0-429-09211-4 (eBook) This book is dedicated to Prof. Denis Weaire, Prof. Stefan Hutzler, and Dr. Adil Mughal, who introduced us to the fascinating field of packing problems during our wonderful times at Trinity College Dublin.

And Happy 80th Birthday to Denis!

Contents

Preface			xi		
Ac	know	ledgements by Jens Winkelmann	XV		
1	An Introduction to Packing Problems				
	1.1	Packing Problems in Daily Life	1		
	1.2	Packing Problems in Physics	2		
	1.3	Computational Aproaches to Packing Problems	4		
	1.4	Random Packings of Particles	6		
	1.5	Applications in the Physical Sciences	7		
	1.6	Packing Problems as a Growing Research Field	8		
2	An Introduction to Columnar Structures				
	2.1	A Friday-Afternoon Experiment: Packing Golf Balls			
		into a Tube	9		
	2.2	What Are Columnar Structures?	11		
	2.3	The Phyllotactic Notation: Categorising Columnar			
	Structures				
	2.4 Applications of Columnar Structures: From Botany				
	and Foams to Nanoscience		17		
		2.4.1 Examples from Botany	18		
		2.4.2 Dry and Wet Foam Structures	20		
		2.4.3 Nanoscience: Microrods and Optical			
		Metamaterials	24		
	2.5	Advantages of Generic-Model Simulations	29		
3	Models and Concepts for Columnar Structures				
	3.1	1 The Packing Fraction ϕ			
	3.2 Hard Spheres vs. Soft Spheres				
		3.2.1 The Hard-Sphere Model	33		

		3.2.2	The Soft-Sphere Model	34
	3.3	Differe	ent Types of Columnar Structures	37
		3.3.1	What Is a Uniform Structure?	37
		3.3.2	What Is a <i>Line-Slip</i> Structure?	39
	3.4	Dense	st Hard-Sphere Packings inside Cylinders	41
	3.5	Simula	ation Techniques: Minimisation Algorithms	44
		3.5.1	Local Minimisation Routines	45
		3.5.2	Global Minimisation Routines	46
4	Pack	ing of H	lard Spheres by Sequential Deposition	49
	4.1	Mathe	matical Description of Sequential Deposition	50
		4.1.1	Equations for the Geometric Relation between	
			Two Spheres in Contact	50
		4.1.2	Surface Representation of a Single Sphere	54
		4.1.3	Simultaneous Deposition of Spheres	56
		4.1.4	Empirical Packing Fractions for an Infinitely	
			Long Cylinder	57
	4.2		rical Trials of Sequential Deposition	59
		4.2.1	Successful Trial for a Densest Zigzag Structure	59
		4.2.2	Successful Trial for a Densest Achiral Structure	60
		4.2.3	Unsuccessful Trial for a Densest Single-Helix	
			Structure	62
		4.2.4	Successful Trial for a Densest Single-Helix	
			Structure	63
	4.3		em with a Flat Base at $D > 2$	63
	4.4	Seque	ntial Deposition: The Packing Algorithm	65
		4.4.1	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	66
		4.4.2	Packing Algorithm for $D \ge 2$	67
	4.5	Colum	nar Structures from Sequential Deposition	69
		4.5.1	Examples of Structures at $D = 2.35$	69
		4.5.2	Examples of Structures at $D = 2.25$	72
	4.6	Conclu	usions	75
5	Soft-Sphere Packings in Cylinders 7			
	5.1		luction to Soft-Sphere Packings in Cylindrical	
			nement	78
	5.2		ations: Minimisation of Enthalpy <i>H</i>	79
	5.3		ation and Observation of Line-Slip Structures in	
		Soft-S	phere Packings	83

		5.3.1	Phase Diagram of All Uniform and Line-Slip	
			Structures without Internal Spheres	83
		5.3.2	Structural Transitions in the Phase Diagram	85
		5.3.3	Experimental Observation of Line-Slip	
			Structures	88
	5.4	Hyste	resis and Metastability in Structural Transitions	91
		5.4.1	Enthalpy Curves at Constant Pressures for a	
			Reversible Transition	93
		5.4.2	Stability Diagram for a Reversible Transition	95
		5.4.3	Directed Network of Structural Transitions	98
	5.5	Conclu	usions	101
6	Rota	ational (Columnar Structures of Soft Spheres	105
	6.1	Introd	luction to Rotational Columnar Structures	106
	6.2	Lee et	al.'s Lathe Experiments	107
	6.3	Colum	nnar Structures from Rapid Rotations: A	
		Theor	etical Analysis	111
		6.3.1	Energy of Hard-Sphere Packings	111
		6.3.2	Analytic Energy Calculation of Soft-Sphere	
			Packings	114
	6.4	Colum	nnar Structures from Rapid Rotations:	
		Simula	ations of Finite-Sized Systems	118
		6.4.1	Method of Simulation: Energy Minimisation	119
		6.4.2	Line-Slip Structures of Finite-Sized Systems	120
	6.5	Conclu	usions	122
7	Hard	d-Spher	e Chains in a Cylindrical Harmonic Potential	125
	7.1	Spher	e Chains in a Cylindrical Harmonic Potential	126
		7.1.1	Localised Buckling in Compressed Sphere	
			Chains	126
		7.1.2	Compression Δ	129
	7.2	Simula	ation Methods	129
		7.2.1	Iterative Stepwise Method	130
		7.2.2	Simulations Based on Energy Minimisation	132
	7.3	Nume	rical Results	133
		7.3.1	Typical Profiles	133
		7.3.2	Bifurcation Diagrams	135
		7.3.3	Maximum Angles	138
	7.4	Linear	r Approximation	139

	7.5	Comp	arison with Experiments	142	
	7.6	Conclu	usions	143	
8	Sum	mary a	nd Outlook	147	
	8.1	Chapt	er Outline	147	
	8.2	Hard-Sphere Packings from Sequential Deposition			
		8.2.1	Summary	148	
		8.2.2	Outlook	148	
	8.3	Soft-S	phere Packings in Cylinders	149	
		8.3.1	Summary	149	
		8.3.2	Outlook: An Exhaustive Investigation of		
			Hysteresis	149	
	8.4	Rotati	onal Columnar Structures of Soft Spheres	151	
		8.4.1	Summary	151	
		8.4.2	Outlook: Further Investigations of Finite-Size		
			Effects	152	
	8.5	Hard-	Sphere Chains in a Cylindrical Harmonic		
		Potent	Potential		
		8.5.1	Summary	154	
		8.5.2	Outlook: Extensions of Current Simulations		
			and Experiments	154	
	8.6	isk Packings Inside a Two-Dimensional			
		Rectangular Channel			
	8.7	Limitations of the Soft-Sphere Model			
		8.7.1	Soft Disks vs. Two-Dimensional Foams	159	
		8.7.2	Average Contact Number $Z(\phi)$	161	
	8.8	The M	lorse–Witten Model for Deformable Spheres	163	
Ap	openo	lix A: T	abulated Hard-Sphere Results	167	
Ap	openo	lix B: M	Iinimisation Routines	171	
Ap	openo	lix C: E	nergy of (<i>l, l,</i> 0) Structures	177	
Bi	bliogr	raphy		179	
In	dex			193	

Preface

Columnar structures, many of which are helical, refer to dense cylindrical packings of particles. They are ubiquitous, for example they exist in the contexts of botany, foams, and nanoscience. There have been in-depth investigations of columnar structures of both hard spheres (e.g. ball bearings) and soft spheres (e.g. wet foams) through computer simulations, analytic derivations, or simple experiments. This monograph serves as a comprehensive guide for any scientist, engineer, or artist who would like to have a good grasp of the fundamentals and applications of such aesthetically appealing structures for his or her own professional interests.

This monograph is organized as follows: We first give an introduction to the field of packing problems, where such problems are not only related to the columnar structures presented in this monograph but also to the structures of condensed matter systems in general. We then discuss what columnar structures of spheres are, with an overview of their classifications and possible applications. This is followed by a discussion of the models and concepts employed in the study of such columnar structures. Following this, we discuss in detail a method of sequential deposition for generating columnar structures of hard spheres computationally or experimentally. We then present findings on columnar structures of soft spheres and on buckled columnar structures of longitudinally compressed hard-sphere chains.

This monograph is a collection of original research carried out by the two of us in the Foams and Complex Systems Research Group of Trinity College Dublin at respectively different eras [Ho-Kei Chan, post-doctoral research fellow (2009–2012); Jens Winkelmann, PhD student (2015–2020)] under the supervision of Prof. Denis Weaire and Prof. Stefan Hutzler and in collaboration with Dr. Adil Mughal from Aberystwyth University. We are grateful to Denis, Stefan, and Adil for introducing us to the fascinating field of packing problems during our wonderful times at Trinity College Dublin. We end this preface by sharing a few memorable pictures taken during our times at Trinity. May the Foams and Complex Systems Research Group of Trinity College Dublin continue to thrive for many years to come.

> Jens Winkelmann Ho-Kei Chan Autumn 2022