


Biochemical Engineering An Introductory Textbook

Debabrata Das | Debayan Das

Biochemical Engineering

Biochemical Engineering An Introductory Textbook

Debabrata Das Debayan Das

Published by

Jenny Stanford Publishing Pte. Ltd. Level 34, Centennial Tower 3 Temasek Avenue Singapore 039190

Email: editorial@jennystanford.com Web: www.jennystanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Biochemical Engineering: An Introductory Textbook

Copyright © 2019 by Jenny Stanford Publishing Pte. Ltd. *All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.*

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4800-43-3 (Hardcover) ISBN 978-0-429-03124-3 (eBook)

Contents

Foreword	1	xiii
Preface		XV
List of Sy	mbols	xvii
1 Int	roduction	1
1.1		2
1.1	0	4
1.2	1.2.1 Microbial Culture	5
	1.2.2 Microbial Growth Cycle	8
1.3	-	9
110	1.3.1 Biomolecules	10
	1.3.2 Metabolism and Metabolic Pathways	12
1.4		14
	1.4.1 Strain Selection and Improvement	16
	1.4.2 Bioprocess Design and Optimization	17
1.5		19
	1.5.1 Agricultural Bioprocesses	19
	1.5.2 Single-Cell Proteins	20
	1.5.3 Biopharmaceuticals	20
	1.5.4 Food and Dairy Applications	20
	1.5.5 Environmental Applications	21
	1.5.6 Biofuels	21
	1.5.7 Biosensors	21
1.6	Objectives of the Book	22
1.7	F	22
1.8	Major Chapters	22
2. Sto	ichiometry of Bioprocesses	25
2.1	Law of Conservation of Mass	25
2.2	Mass Balance of Bioprocesses	26
2.3	Thermodynamic Efficiency	30
3. Ch	emical Reaction Thermodynamics, Kinetics, and	
Rea	actor Analysis	45
3.1	Chemical Reaction Thermodynamics	45

4.

	3.1.1	Scope an	d Introduction	45	
	3.1.2	Reversib	le and Irreversible Processes	48	
	3.1.3	Work and	l Heat	48	
	3.1.4	Concept	of Internal Energy	49	
	3.1.5	First Law	v of Thermodynamics	50	
		3.1.5.1	Enthalpy	51	
		3.1.5.2	Constant-volume and		
			constant-pressure process	52	
		3.1.5.3	Heat capacity	53	
		3.1.5.4	Isothermal and adiabatic		
			process	54	
		3.1.5.5	Entropy	55	
		3.1.5.6	Gibbs free energy	57	
		3.1.5.7	Enthalpy of formation ($\Delta H_{\rm f}$)	59	
		3.1.5.8	Enthalpy of combustion		
			$(\Delta H_{\rm comb})$	59	
		3.1.5.9	Hess's law	59	
		3.1.5.10	Chemical equilibrium	60	
3.2		cal Reaction	n Kinetics	61	
	3.2.1	Rate of R	eaction	62	
	3.2.2	Irreversi	ble Second-Order Reaction	66	
	3.2.3	Irreversi	ble Reactions in Parallel	70	
	3.2.4	Irreversi	ble Series Reaction	72	
3.3		ible Reaction		74	
3.4	Depen	dency of Re	lency of Reaction Rate on Temperature		
3.5	Chemi	cal Reactor	Analysis	76	
	3.5.1	Batch Rea	actor	77	
	3.5.2	Continuo	us Stirred Tank Reactor	79	
	3.5.3	0	v Reactor	80	
3.6	Multip	le Reactor S	System	82	
Enzyr	natic Rea	ction Kineti	cs	115	
4.1	Charac	teristics of	an Enzyme	118	
4.2	Applica	ation of Enz	zymes	118	
4.3	Enzym	e Kinetics		119	
	4.3.1	Michaelis	s–Menten Approach	123	
	4.3.2	Briggs-H	aldane Approach	125	
4.4	Estima	tion of the	Kinetic Parameters		
	v _{max} an			126	
4.5	Biorea	ctor Modeling for Enzymatic Reaction			

		4.5.1	Batch Bi	oreactor	128
		4.5.2	Plug Flov	w Bioreactor	129
		4.5.3	Continuo	ous Stirred Tank Bioreactor	130
	4.6	Inhibiti	on of Enzy	yme Reactions	132
		4.6.1	Competi	tive Inhibition	132
		4.6.2	Non-com	petitive Inhibition	133
	4.7	Factors	Affecting	Enzymatic Reactions	135
		4.7.1	Effect of	pH	135
		4.7.2		Temperature	136
		4.7.3	Effect of	Shear	136
5.	Immob	oilized En	zymes		173
	5.1	Merits of	of Immobi	lized Enzymes	173
	5.2	Demeri	ts of Immo	obilized Enzymes	174
	5.3	Classifi	cations of	Immobilization Techniques	174
	5.4	Charact	erization	of Immobilized Enzymes	179
		5.4.1	Activity	of Immobilized Enzymes	179
		5.4.2	Bound P	rotein	179
		5.4.3	Specific .	Activity of Bound Protein	179
		5.4.4	Coupling	Efficiency	180
		5.4.5	Stability	of Carrier–Enzyme Complexes	180
		5.4.6	Material	s, Methods, and Conditions of	
			-	Technique	180
		5.4.7	Physicoc	hemical Characteristics of	
			Carrier		181
			5.4.7.1	Solid matrix morphology	
				and configuration	183
		5.4.8	Applicat	ion of Immobilized Enzymes	186
			5.4.8.1	Industrial	186
			5.4.8.2	Analytical	187
			5.4.8.3	Medical	187
	5.5			bilized Enzymes	187
		5.5.1		Mass-Transfer Resistance	188
			5.5.1.1	Effectiveness factor and	
				Damköhler number	190
			5.5.1.2	Determination of the factor	
				affecting overall rate of	
			D (C) 2	reaction	192
		5.5.2		Internal Mass Transfer	192
			5.5.2.1	Effectiveness factor and	10-
				Thiele modulus	197

6.	Microbial Growth Kinetics, Substrate Degradation,				
	and Pr	Product Formation			
	6.1	Differe	nces between Enzymatic and Microbial		
		Reactio	on	207	
	6.2	Bacteri	al Growth Cycle	208	
	6.3	Ideal R	eactor for Kinetics Measurements	211	
		6.3.1	The Ideal Batch Reactor	212	
		6.3.2	Cell Growth Models	215	
			6.3.2.1 Generalized growth model	216	
		6.3.3	Cell Growth Models with Cell Growth		
			Inhibitors	217	
			6.3.3.1 Substrate inhibition	217	
			6.3.3.2 Product inhibition	218	
			6.3.3.3 Toxic compound inhibition	219	
		6.3.4	Logistic Equation	219	
		6.3.5	Cell Growth Characteristics of		
			Multicellular Cells Like Mold	220	
		6.3.6	Product Formation Kinetics in Cell		
			Culture	221	
		6.3.7	Determination of Maintenance		
			Coefficient of Cells	222	
	6.4	Ideal Co	ontinuous Flow Stirred Tank Reactor	223	
		6.4.1	Determination of Kinetic Constants in		
			Chemostat	229	
		6.4.2	Analysis of Chemostat with Cell Recycle	230	
			6.4.2.1 Chemostat with cell mass		
			recycling	234	
	6.5	Continu	uous Operation Using Plug Flow Reactor	236	
	6.6	Kinetic	s of Fed Batch Cell Growth	238	
		6.6.1	Variable Volume Fed Batch	238	
		6.6.2	Constant Volume Fed Batch	241	
7.	Air Ste	rilizer		293	
	7.1		ne Microbes	293	
	7.2		ls of Air Sterilization	294	
	7.3	-	al Implication of Single Fiber Collection		
		Efficier	5	295	
		7.3.1	Inertial Impaction	296	
		7.3.2	Interception	296	
		7.3.3	Diffusion	297	

	7.4	Types o	f Filters	301
		7.4.1	Depth Filters	301
			7.4.1.1 Pressure drop in air filter	303
		7.4.2	Membrane Filters	303
			7.4.2.1 PVA filter for air sterilization	304
	7.5	Experin	nental Setup for Air Sterilization	305
	7.6	Selectio	on Criteria of Air Filter	306
	7.7	Econom	nic Considerations	306
8.	Mediu	m Steriliz	er	313
	8.1	Filtratio	on	314
		8.1.1	Physical Characteristics of	
			Microorganisms	314
		8.1.2	Filter Type	314
			8.1.2.1 Depth filters	314
			8.1.2.2 Absolute filters	315
		8.1.3	Filtration Strategy	315
	8.2		l Destruction	316
		8.2.1	Thermal Death Kinetics	316
		8.2.2	Effect of Temperature on Death	
			Kinetics	317
		8.2.3	Experimental Determination of	
			Microbial Death Rate	318
		8.2.4	Batch Sterilization of Medium	319
		8.2.5	Temperature–Time Profile during	
			Batch Sterilization	320
		8.2.6	Scale-Up of Batch Sterilization	321
	8.3		ious Sterilization	322
		8.3.1	Equipment for Continuous	
			Sterilization	323
			8.3.1.1 Continuous steam injection	323
			8.3.1.2 Continuous plate heat	
			exchangers	323
	8.4	-	of a Continuous Sterilizer	324
		8.4.1	Fluid Flow	324
9.	Transpo	ort Phen	omena of Bioprocesses	335
	9.1	Fluid M	echanics in Bioprocesses	337
	9.2		ry Layer Theory	343
	9.3	Incomp	ressible Fluid Flow inside a Pipe	345

	9.4	Mass Transfer in Bioprocess 346			346
	9.5	Diffusion in Liquid and Gas			347
	9.6	Oxygen	ygen Diffusion in Fermentation Broth		
		9.6.1	Mechani	sm of Mass Transfer	351
		9.6.2	Estimati	on of Mass-Transfer	
			Coefficie	ents via Correlations	352
		9.6.3	Volumet	ric Mass-Transfer Coefficient	353
	9.7	Determ	ination of	Oxygen-Absorption Rate	354
		9.7.1	-	ental Determination of $k_{\rm L}a$	
				mic Gassing out Techniques	357
	9.8	Heat Tr		Bioprocess	361
		9.8.1	Conduct		361
		9.8.2	Convecti	on	363
			9.8.2.1	Free convection	366
			9.8.2.2		368
			9.8.2.3	Forced convection across	
				tube banks	369
	9.9		-	verall Heat Transfer	
			ient (U)		371
	9.10	Power	Consumpt	ion	373
10.	Proces	s Parame	eters Moni ⁻	toring and Control	379
	10.1	Operati	ional Para	meters for Bioprocess	379
	10.2	Purpose of Monitoring Different Operational			
		Parame	eters		384
	10.3	Resista	nce Thern	nometer	385
	10.4	Foam C	ontrol		385
	10.5	Rotame	eter		386
	10.6	Rotatio	nal Viscon	neter	388
	10.7	Turbidi	ty Meter		388
	10.8	pH Prol	be		389
	10.9	Dissolv	ed O ₂ Prob	be	390
	10.10	$CO_2 Pro$	obe		392
	10.11	Oxidati	on–Reduc	tion Potential Sensor	392
	10.12	Automa	ated Proce	ss-Control System	392
11.	Downs	tream Pi	rocessing		395
	11.1	Solid-L	iquid Sepa	aration	396
		11.1.1	Pretreat		396
		11.1.2	Sedimen	tation	397

	11.1.3	Centrifugal Se	ettling	397
	11.1.4	Filtration		399
		11.1.4.1 Pla	te and Frame Filter Press	401
		11.1.4.2 Rot	tary Vacuum Drum Filter	401
		11.1.4.3 Me	mbrane Filter	402
11.2	Concen	tration		404
11.3	Purifica	tion of the Pro	duct	404
	11.3.1	Liquid–Liquid	l Extraction	405
	11.3.2	Adsorption		407
	11.3.3	Chromatogra	ohy	410
11.4	Formul	ation		411
	11.4.1	Crystallizer		411
12. Indust		entation Proces	ses	415
12.1	Baker's			416
			ker's Yeast Production	416
12.2		cation of Baker		416
12.3	Baker's	Yeast Ferment	ation Process	417
	12.3.1	Raw Materials	5	418
		12.3.1.1 The	eoretical calculation	
		of o	cane molasses	
		req	uirement for Baker's	
		yea	ist production	419
			pical material analysis	420
	12.3.2	Characteristic	rs of Yeast	420
	12.3.3	Other Physico	chemical Parameters	421
12.4	Ethano	Fermentation	Process	422
	12.4.1	Classification	of Ethanol	422
	12.4.2	Microbes Use	d in Alcohol	
		Fermentation		423
	12.4.3	Factors that A	ffect Alcohol	
		Fermentation		423
12.5	Citric A	cid Fermentati	on Process	426
	12.5.1	History of Cit	ric Acid Production	427
	12.5.2	Citric Acid Fe	rmentation Process	427
	12.5.3	Materials Ana	lysis of Citric Acid	
		Fermentation	Process	431
	12.5.4	Sample Calcul	lation for Yield and	
		Productivity		431

13.	Biological Wastes Treatment Processes			445
	13.1	1 Activated Sludge Process		
		13.1.1	Nature and Morphology of Mixed	
			Microbes	447
		13.1.2	Settling Characteristics of the Sludge	447
		13.1.3	Process Parameters	448
		13.1.4	Calculation of Oxygen Uptake Rate	449
		13.1.5	Design of Activated Sludge Process	450
		13.1.6	Kinetic Models	451
		13.1.7	Effect of Temperature and pH	452
		13.1.8	Sedimentation Tanks or Separator	453
	13.2	Biologi	cal Wastewater Treatment Process by	
		Immob	ilized Whole Cell Reactor	459
		13.2.1	Rotating Disk Biological Reactor	459
	13.3	Anaero	bic Digestion Process	465
		13.3.1	Process Design	465
	13.4	Develop	oment of Overall Kinetic Model for AD	
		of Orga	nic Biomass (A)	470
		13.4.1	Two-Step Anaerobic Digestion Process	471
Inde	x			479

Foreword

The importance of biotechnology has been increasing due to the manipulation of DNA for the production of several new bioproducts

that are useful in chemical, pharmaceutical, agricultural, and environmental management. Through research work, it is possible to produce new products useful for mankind.

A book on biochemical engineering would certainly help not only the undergraduate and postgraduate students but also researchers and process engineers involved in developing and applying bioprocesses to get all the necessary information for designing and operating

bioreactors, which are the heart of any biochemical process. I congratulate the authors, Prof. Debabrata Das and Dr. Debayan Das, for seeing the need for such a book and bringing it out in a timely manner. The present book titled *Biochemical Engineering: An Introductory Textbook* comprehensively covers all aspects of the applications of bioprocesses. The objective of this book is to carry out the mathematical analysis of the processes in simplified forms in order to be understandable and utilizable by most of the biologists. Derivation of mathematical equations is explained in details so that the majority of the students can understand the meaning of the equations.

I strongly recommend this excellent book to the undergraduate and postgraduate students in biotechnology, biochemical engineering, chemical engineering, food technology, biochemistry, and related fields and also to the researchers and process engineers involved in the production of bioproducts so that they can enrich their knowledge in the area of application of biosciences and benefit mankind.

Prof. Roberto De Philippis

Department of Agrifood Production and Environmental Sciences University of Florence, Italy

Preface

Education is not the learning of the facts, but training of the mind to think.

—Albert Einstein

All engineering disciplines have been developed from basic sciences. Science gives us the knowledge to develop new products whereas engineering applies science to scale up production for commercial purposes. Biological processes involve different biomolecules, which come from living sources. It is now possible to modify DNA to get desired changes in biochemical processes. Developments in gene expression, protein engineering, and cell fusion have significantly affected product development in biotechnology industries. Chemical processes deal with different reactions to get desired products. Biochemical reactions in nature are mostly reversible and chain reactions. To understand biochemical engineering, it is necessary to know the principles of chemical engineering, which involves not only mathematical modeling but also scaling up of processes for commercial applications. Any biochemical industry can be divided into three major steps. The first step is upstream processing, which involves medium preparation, medium and air sterilization, etc. The second step involves the bioreactor where biochemical reactions lead to the desired products. The third and crucial step is purification of the products, known as downstream processing.

This book begins with the identification of the differences between conventional chemical reaction engineering and biochemical reaction engineering. It gradually makes readers conversant with the rate laws and their applications to help them understand reaction engineering behavior and give them the expertise to apply the acquired knowledge in designing bioreactors. It discusses the stoichiometry of bioprocesses for materials and energy analysis and the transport phenomena that are important for the operation of bioprocesses. The book also enables students to contribute their knowledge in various professional fields like bioprocess development, modeling and simulation, environmental engineering, etc. The chapters are organized in broad engineering sub-disciplines such as mass and energy balances, reaction theory using chemical and enzymatic reactions, microbial cell growth kinetics, and transport phenomena. Other chapters such as different control systems used in the fermentation industry, case studies of some industrial fermentation processes, different downstream processes, and effluent treatment are also included. Each chapter begins with a fundamental explanation for general readers and ends with in-depth scientific details suitable for expert readers. The book also includes solutions of more than 100 problems. It is written in a manner so that it can be useful to senior and graduate students of biotechnology and those studying courses in food and environmental engineering. It is also appropriate for chemical engineering graduates, undergraduates, and industrial practitioners.

We would like to acknowledge help of Ms. Jhansi L. Varanasi and Mr. Chandan Mahata at various stages of manuscript preparation. We are also thankful to Mr. Tapas Mohanty for his help in creating most of the book's illustrations using computer graphics.

We hope this book will be useful to our readers!

Debabrata Das Debayan Das Summer 2019

List of Symbols

Symbols

а	Constant
Α	Area
A _b	Frontal area of the float
A _p	Area of the particle
$a_{ m m}$, $a_{ m v}$	Surface area per unit volume
b	Constant
С	Heat capacity; Concentration, Concentration ratio, Cunningham's correction factors for slip flow
$C_{\rm A}^*$	Equilibrium concentration of solute in fluid phase
C_{AS}^{*}	Equilibrium concentration of solute on the solid surface
$C_{\rm ASm}$	Maximum solute adsorption capacity of the solid
$C_{\rm Dm}$, $C_{\rm D}$	Drag coefficient
C_{E}	Equilibrium solute concentration in extracting solvent
C _P	Product concentration; Heat capacity at constant pressure
$C_{\rm R}$	Equilibrium solute concentration in raffinate
Cs	Substrate concentration
$C_{\rm V}$	Heat capacity at constant volume
D	Dilution rate, Decimal reduction time
D _a	Damköhler number
$D_{ m es}$, $D_{ m BM}$, $D_{ m AB}$	Effective diffusivity of substrate, Diffusivity of the particle, Diffusivity A into B
$d_{ m P}$, $d_{ m f}$, $d_{ m S}$	Particle diameter, Fiber diameter, Sauter mean diameter
Dz	Axial dispersion coefficient

xviii List of Symbols

E , $E_{\rm a}$, $E_{\rm o}$ or $e_{\rm o}$	Activation energy, Total enzyme concentration, Potential difference
$E_{\rm IME}$	Overall activity of immobilized enzyme
F	Force, Volumetric flow rate, Faraday constant, Flow rate
f	Friction factor
F _d	Drag force
F _b	Buoyancy force
G	Free energy, Substrate feed rate
<i>g</i> _c , <i>g</i>	Conversion factor, Acceleration due to gravity
G _r	Grashof number
h	Heat transfer coefficient
Н	Enthalpy
H_{f}	Enthalpy of formation
$H_{\rm comb}$	Enthalpy of combustion
Ι	Inhibitor concentration
K, k	Constant, Thermal death rate constant, Rate constant
k _a	Mass transfer coefficient
K _A	Adsorption constant
$k_{ m G}$	Gas side mass transfer coefficient
K _i	Inhibition constant
$k_{ m L}$	Mass transfer coefficient in the liquid phase
$k_{\rm L}a$	Volumetric mass-transfer coefficient
$k_{ m f}$	Rate constant of forward reaction
K _{eq}	Equilibrium constant
K _m	Michaelis–Menten constant
$k_{ m p}$	Product inhibition constant
K _S	Saturation constant
k _r	Rate constant of backward reaction
1	Length
т, т _S	Mass, Maintenance coefficient, Empirical constant

Μ	Amount of biomass
Ν	Number of moles, Concentration of the cells,
	Number of discs in the stack
n	Order of reaction, Constant
N _P	Power number
N _r	Reaction number
N _S	Rate of mass transfer
N _u	Nusselt number
Р	Pressure, Product concentration
P _e	Peclet number
Po	Power number
P _r	Prandtl number
q, Q	Thermal energy, Rate of uptake of oxygen, Heat
	flux, Volumetric flow rate
$q_{ m P}$	Specific product formation rate
$q_{\rm S}$	Specific substrate consumption rate
r	Rate of reaction, Radius
R	Gas constant, Radius, Pellet radius
R _a	Rayleigh number
Re, N _{Re}	Reynolds number
<i>r</i> ₀₂	Rate of oxygen consumption
r _x	Specific oxygen uptake rate
Т	Temperature
t , $t_{ m gn}$, $t_{ m d}$, $t_{ m b}$,	Time, Generation time, Doubling time, Batch time,
$t_{ m hd}$	Holding time
<i>S</i> , <i>S</i> ₀ , <i>S</i> _{SS}	Entropy, Substrate concentration, Initial
	substrate concentration, Steady state substrate
2	concentration
Sc	Scmidth number
Sh	Sherwood number
и, U	Internal Energy, Overall heat transfer coefficient
V, v	Volume, Air velocity, Rate of reaction

xx List of Symbols

<i>v</i> _{max}	Maximum velocity of reaction
$V_{\rm P}$, $V_{\rm R}$, $V_{\rm C}$, $V_{\rm g}$	Volume of the particle, Volume of the reactor, Critical air velocity, Settling velocity
W, w	Work done
Х	Fraction of the substrate converted
<i>x</i> ₉₀	90 % removal of cell mass
Y	Mole fraction
Y _C	g C-atom biomass/g C-atom substrate
$Y_{\rm X/S}$, Y	Cell mass yield coefficient
$Y_{\rm P/S}$	Product yield coefficient
$Y_{\rm X/O}$	g biomass/g oxygen as O_2 consumed
Ζ	Height of the column

Greek Letters

m	Micron, Specific growth rate of the cell
$\mu_{ m max}$	Maximum specific growth rate
$\mu_{ m d}$	Specific death rate of the cell
η	Energetic growth yield, Efficiency
$\xi_{ m p}$	Energetic product yield
$\sigma_{ m b}$	Weight fraction of carbon in biomass
$\sigma_{ m P}$	Weight fraction of carbon in product
$\sigma_{ m S}$	Weight fraction of carbon in substrate
Ъ	Degree of reduction of biomass
$\gamma_{ m p}$	Degree of reduction of product
$\gamma_{\rm s}$	Degree of reduction of substrate
$ au$, $ au_{ m CSTR}$, $ au_{ m PFR}$	Space time, Space time in CSTR, Space time in PFR
ε	Voidage, Void fraction
η	Effectiveness factor
β	Saturation parameter, Non-growth associated coefficient
φ	Thiele modulus, Inertial parameter
ρ	Density

α	Growth associated coefficient, Recycle ratio, Volume fraction of the filter
$lpha_{ m g,m}$	Fraction of carbon utilized for cell growth and maintenance
$lpha_{ m G}$	Fraction of carbon converted to gaseous form
$ abla_{ ext{total}}$	Sterilization criterion
\mathcal{E}_{M}	Eddy diffusivity of momentum
τ	Stress
ω	Angular velocity
λ	Extraction factor
θ	Hydraulic retention time
$\theta_{\rm C}$	Mean cell residence time

Abbreviations

А	Arrhenius constant
AC	Activated charcoal
Acetyl-CoA	Acetyl co-enzyme A
AD	Anaerobic digestion
ADP	Adenosine diphosphate
AMP	Adenosine monophosphate
6-APA	6-aminopenicillanic acid
ASP	Activated sludge process
ATP	Adenosine triphosphate
BOD	Biochemical oxygen demand
CA	Citric acid
CAA	Citric acid anhydrous
CAM	Citric acid monohydrate
СМС	Carboxymethylcellulose
CoA	Coenzyme A
COD	Chemical oxygen demand
CSTR	Continuous stirred tank reactor
DEAE	Diethylaminoethyl

xxii List of Symbols

DHAP	Dihydroxy acetone phosphate
DNA	Deoxyribonucleic acid
DO	Dissolved oxygen
EMP	Embden–Meyerhof–Parnas
FAD	Flavin adenine dinucleotide (oxidized form)
FADH	Flavin adenine dinucleotide (reduced form)
FDA	Food and Drug Administration
F6P	Fructose-6-phosphate
F1,6 P	Fructose 1,6 diphosphate
FTU	Formazin turbidity unit
GC	Gas chromatograph
HAc	Acetic acid
HEPA	High efficiency particulate air
HFCS	High fructose corn syrup
HLac	Lactic acid
HMP	Hexose monophosphate
IE	Immobilized enzyme
IR	Infrared
KE	Kinetic energy
LAB	Lactic acid bacteria
LC	Liquid chromatograph
MLSS	Mixed liquor suspended solids
MLVSS	Mixed liquor volatile suspended solids
NAD+	Nicotinamide adenine dinucleotide (oxidized form)
NADH	Nicotinamide adenine dinucleotide (reduced form)
NADP ⁺	Nicotinamide adenine dinucleotide phosphate (oxidized form)
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced form)
NTU	Nephelometric turbidity unit
PE	Potential energy

- PEP Phosphoenolpyruvate
- PFFP Plate and frame filter press
- PFR Plug flow reactor
- RBC Rotating disc biological contactor
- RNA Ribonucleic acid
- RQ Respiratory quotient
- RVF Rotary vacuum filter
- SCP Single cell protein
- SVI Sludge volume index
- TCA Tricarboxylic acid
- TA Total acid
- UQ Ubiquinone
- UV Ultraviolet
- VFA Volatile fatty acid