

Advances in Thin-Film Solar Cells

Second Edition

Advances in Thin-Film Solar Cells Second Edition

Advances in Thin-Film Solar Cells Second Edition

I. M. Dharmadasa

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Advances in Thin-Film Solar Cells (Second Edition)

Copyright © 2018 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4800-12-9 (Hardcover) ISBN 978-0-429-02084-1 (eBook)

Contents

Preface to the Second Edition			xiii			
Lis	List of Symbols and Abbreviations					
1	Photovoltaic Solar Energy Conversion			1		
	1.1 Introduction					
	1.2	Photo	voltaic Effect	1 3		
	1.3	Solar Energy Materials				
	1.4 Electronic Devices Used for Solar Energy Conversion			5		
			p–n Junctions	5		
			p–i–n Junctions	7		
		1.4.3	Hetero-junctions	8		
		1.4.4	n–n and p–p Junctions	9		
		1.4.5	Metal/Semiconductor (or Schottky) Contacts	10		
		1.4.6	Metal/Insulator/Semiconductor Interfaces	12		
	1.5	Chara	cteristics of a Solar Cell	14		
		1.5.1	<i>I–V</i> Characteristics of a Solar Cell Under Dark			
			Conditions	14		
		1.5.2	I-V Characteristics of a Solar Cell Under			
			Illuminated Conditions	18		
		1.5.3	How to Maximise $V_{\rm oc}$	20		
		1.5.4	How to Maximise J_{sc}	21		
		1.5.5	How to Maximise FF	22		
	1.6	Sumn	5	22		
		Exerc	ises	24		
2	Stat	us Repo	ort on Solar Energy Technologies	27		
	2.1	Introd	luction	27		
	2.2	2 Si Solar Cell Technology				
	2.3 PV Manufacturing Cost Based on Si Technology					

	2.4	PV Te	chnology Based on III–V Compounds	34	
	2.5		ptive Technology for PV Development	35	
	2.6	Emer	ging Low-Cost Thin-Film Technologies	36	
	2.7	Next-	Generation Solar Cells	37	
	2.8	Sumn	nary	39	
		Exerc	ise	41	
3	Elec	troche	mical Deposition of Solar Energy Materials	43	
	3.1		duction	43	
	3.2	Electi	rodeposition of Semiconductors	44	
	3.3		gths and Advantages of Electrodeposition	45	
		3.3.1	Simplicity, Low-Cost, Scalability, and		
			Manufacturability	45	
		3.3.2	Self-Purification and Built-In Hydrogen		
			Passivation	47	
		3.3.3	Extrinsic and Intrinsic Doping	48	
		3.3.4	Ability in Bandgap Engineering	49	
		3.3.5	Other Advantages of Electrodeposition	49	
	3.4	Expe	rimental Evidence	50	
		3.4.1	Observations in XRD	50	
		3.4.2	Observations in XRF	50	
		3.4.3	Observations in PEC Cell Measurements	52	
		3.4.4	Observations in Optical Absorption		
			Measurements	56	
		3.4.5	Observations in Photoluminescence	57	
		3.4.6	Impurity Control in Semiconductors	59	
	3.5	Issue	s in Electrodeposition of Semiconductors	60	
	3.6	Summary of Electroplated Materials to Date 6			
	3.7	Applications in PV Devices			
	3.8	Sumn	5	66	
		Exerc	ises	69	
4	Bacl	kgroun	d of the CdTe Solar Cell and the New Device		
	Con	cept		71	
	4.1	Intro	duction	71	
	4.2		revious Model for a Glass/Conducting		
		Glass	/CdS/CdTe/Metal Solar Cell	73	

	4.3	Key O	bservations That Led to the Formulation of a			
		New I	Model	76		
		4.3.1	Surface Modification of CdTe	76		
		4.3.2	Effects of Surface Modification on Defect Levels	76		
		4.3.3	Effects of Defect Levels on Electronic Devices	77		
		4.3.4	Similar Observations on Thin-Film CdS/CdTe			
			Solar Cells	79		
	4.4	New (Concept for CdS/CdTe Solar Cell	80		
	4.5	iption of Experimental Results Using the				
		Two Models				
		4.5.1	Current–Voltage (I–V) Characteristics	85		
		4.5.2	Capacitance–Voltage (C–V) Characteristics	86		
		4.5.3	Electron Beam–Induced Current			
			Measurements	87		
		4.5.4	Observation of Discrete Barrier Heights and			
			V _{oc} Values	87		
		4.5.5	A Thin-Film CdTe Solar Cell Device Without a			
			CdS Layer	88		
		4.5.6	Results from Electrical Contacting Work	89		
		4.5.7	Doping of CdS and CdTe Layers	90		
		4.5.8	Further Experimental Evidence to Confirm the			
			True Structure of the Device	91		
	4.6	Predictions for the Further Development of CdS/CdTe				
		Solar	Cells and Latest Observations	94		
		4.6.1	Doping of Window and Absorber Materials			
			with n-Dopants	94		
		4.6.2	Improvements to Back Contact Using			
			MIS-Type Structures	99		
		4.6.3	A Multi-layer Graded Bandgap Approach	102		
		4.6.4	Dealing with Defects	103		
		4.6.5	Progress during the Period 2011–2016	105		
	4.7	Sumn	nary	107		
		Exerc	ises	111		
5	Exte	nsion o	of the New Model to CIGS Thin-Film Solar Cells	115		
	5.1	duction	115			
	5.2		nary of Accumulated Knowledge on			
		CIGS-Based Materials				

		5.2.1	Different Growth Techniques	116			
		5.2.2	Structural, Optical, and Electrical Properties	116			
		5.2.3	Ordered Defect Compound Layer	117			
		5.2.4	Latest Developments in Materials Growth	117			
	5.3	Sum	mary of Accumulated Knowledge on				
		CIGS	-Based Solar Cells	118			
		5.3.1	Conventional Device Structure	118			
		5.3.2	Frequently Used Energy Band Diagram	119			
	5.4	Curr	ent Views of the Physics Behind CIGS Solar Cells	121			
		5.4.1	p-CIGS/n-CdS Hetero-junction	121			
		5.4.2	p-CIGS/n-CIGS Homo-junction	121			
		5.4.3	p-CIGS/n-ODC Hetero-junction	122			
	5.5	Repo	orted Device Performance	122			
	5.6	Rece	nt Work on Metal/p-CIGS Interfaces	124			
	5.7	Deep	er Understanding of Mo/CIGS/CdS/i-ZnO/				
		n-Zn	0:Al/Metal-Grid Solar Cells	126			
		5.7.1	Type I CIGS-Based Solar Cell	126			
		5.7.2	Type II CIGS-Based Solar Cell	130			
	5.8	Discu	Discussion on Further Improvements of CIGS				
		Solaı	Cells	132			
		5.8.1	Optimisation of Growth, Doping, and				
			Bandgap Engineering	133			
		5.8.2	Defect Level Identification and Engineering	133			
		5.8.3	Growth of CIGS with Controlled Orientation	134			
		5.8.4	1				
			and Double-Faced Solar Cells	134			
		5.8.5	Further Improvements of the Device				
			Structure	135			
	5.9	Conc	lusions	136			
	5.10	Sum	mary	138			
_							
6			arvesting of Photons	143			
	6.1		luction	143			
	6.2		m Solar Cells	144			
			Connection in Series	145			
		6.2.2		146			
	6.3	-	arison of the Two Connecting Methods	148			
			Disadvantages of Series Connections	148			
		6.3.2	Advantages of Parallel Connections	149			

		Conclusions	151
	6.5	Summary	152
		Exercise	154
7	Mul	ti-layer Graded Bandgap Solar Cells	155
	7.1	Introduction	155
		7.1.1 Incorporation of the Impurity PV Effect	156
		7.1.2 Incorporation of Impact Ionisation	157
	7.2	Summary of Growth and Process Details of the	
		Device Structure	157
	7.3	Experimental Results of Fully Processed Devices	158
		7.3.1 Electrical Properties Under Dark Conditions	159
		7.3.2 Electrical Properties Under AM1.5	
		Illumination	161
		7.3.3 IPCE Measurements	163
		7.3.4 EBIC Measurements	164
		7.3.5 SIMS Profiling	166
		7.3.6 Optimisation of Si Doping Concentration	167
		Discussions	171
	7.5	Summary	173
		Exercise	175
8	Sola	r Cells Active in Complete Darkness	177
		Introduction	177
	8.2	5 1	177
	8.3	Search for Experimental Evidence of the Impurity	
		PV Effect	179
		Responsivity Measurements	180
	8.5	I-V Measurements Under Dark Conditions	181
		8.5.1 <i>I–V</i> as a Function of Light Intensity	181
		8.5.2 <i>I–V</i> Measurements Under Complete Darkness	182
	8.6	Discussion	184
		Conclusions	186
	8.8	Summary	186
		Exercise	188
9		cts of Defects on Photovoltaic Solar Cell Characteristics	189
	9.1		189
	9.2	Variations of <i>I–V</i> Characteristics of Metal/n-CdTe	
		Interfaces	190

	9.3			
	9.4	Variations in GaAs/AlGaAs Solar Cells	195	
		9.4.1 Device Structures Used	196	
		9.4.2 Instability of <i>I–V</i> Characteristics	197	
		9.4.3 Application of Electrical Stresses to the		
		Device	197	
		9.4.4 Discussion and Possible Explanations	199	
	9.5	Variations in CIGS Solar Cells	205	
	9.6	Summary	208	
10	-	ess in Development of Graded Bandgap Thin-Film		
		Cells with Electroplated Materials	211	
	10.1		211	
	10.2		213	
	10.3	5 81		
		Utilising Electroplated Materials	214	
		10.3.1 Stage 1: Preliminary Work on		
		Glass/FTO/n-ZnS/n-CdS/n-CdTe/Au	215	
		10.3.2 Stage 2: Optimisation of Materials and		
		Device Structures	216	
		10.3.3 Stage 3: CdTe Multi-layer Configuration	219	
	10.4	Summary	222	
11	A Fut	ure Dominated by Solar Energy	227	
	11.1		227 228	
	11.2	2 Early Applications with Low Power Requirements		
	11.3	Early Applications with Moderate Power		
		Requirements	229	
	11.4	11 5		
		$(\sim 50 \text{ W Range})$		
	11.5			
		(~100 W Range)	231	
	11.6	Applications in Powering Computers		
		(500–1,000 W Range)	232	
	11.7	Applications in Large-Scale Water Pumping		
		(\sim 1,000 W and Above)	233	
	11.8		238	
	11.9	11		
		(\sim 3 kW Range)	239	

	11.10	Energ	y from Solar Farms and Deserts (MW Range)	242
	11.11	Recon	nmendations for Developing Countries	243
	11.12	Recon	nmendations for Developed Countries	244
	11.13	Summ	hary	245
12	ls Feri	mi-Level	Pinning Affecting GaAs-Based Solar Cells?	247
	12.1	Introdu	action	247
	12.2	Observ	ation of Discrete Sets of <i>I–V</i> Characteristics	247
	12.3	Observ	ation of Discrete Sets of $V_{\rm oc}$ Values	248
	12.4	Discus	sion of New Observations	249
13	Thoug	ts on f	Future Directions of Thin-Film Solar Cell	
	Research and Development			251
	13.1	Introdu	iction	251
	13.2	Areas f	or Research and Development Efforts	251
		13.2.1	-	
			Structures	251
		13.2.2	Is Impact Ionisation and Impurity PV	
			Effect Contributing to the PV Effect?	252
		13.2.3	Are Intermittent Observations of High	
			J _{sc} Values Genuine?	253
		13.2.4	Graded Bandgap Multi-layer Structures	
			for Next-Generation Solar Cells	255
	13.3	Conclu	sions	256
Solı	itions			257
Index			277	

Preface to the Second Edition

Light energy was first converted into electricity by Edmund Becquerel in 1839, but until the 1950s, no considerable development had taken place. However, during the two decades of the 1950s and the 1960s, Si-based solar cells were developed, manufactured, and applied in applications such as satellites and remote communication stations. The first oil crisis, in the early 1970s, gave a huge push to the search for alternative energy conversion methods, and researchers actively searched for new materials and low-cost device structures. As a result, thin-film solar cells based on III-V compounds (GaAs and InP), amorphous Si, CdTe, and CuInGaSe₂ (CIGS) were introduced to mainstream solar energy conversion. In the early 1990s, dye-sensitised solar cells were introduced by Michael Grätzel, and organic solar cells were introduced in the early 2000s. With the renewed interest in nanomaterials, researchers worldwide are exploring the ways of using new materials such as perovskites in solar cell devices. At present, all these photovoltaic (PV) fronts are moving toward producing low-cost and high-efficiency solar cells to convert sunlight into electricity.

The main hurdle in the rapid market penetration of solar energy applications is their high cost. Although there are active research programmes to reduce manufacturing costs and increase conversion efficiencies, the progress is painfully slow for various reasons—one reason being the lack of deeper understanding of material issues and physics behind solar cell devices. This book does not deal with well-documented semiconductor properties and device principles but presents the latest developments and advances in thin-film solar cells, with an introduction to the most required background knowledge. The targeted audience will be undergraduate and postgraduate students in science and engineering; electronic device researchers in chemistry, material science, physics, mathematics, and engineering; and PV module developers and technologists in the industry. This book concentrates mainly on advances in thin-film solar cells based on CdTe-, CIGS-, and GaAs-based devices, but the ideas are equally applicable to all thin-film solar cells.

Chapter 1 introduces solar energy conversion to all readers in a simple manner with the aid of diagrams, references, and animations placed on the author's website. The next chapter provides a brief status report on PV technology. The main barrier in the PV sector is the high manufacturing cost due to the use of expensive materials (Si and III-V compounds) and the high energy consumption during materials growth and device processing. The initial high capital cost of equipment also exacerbates this situation. As a solution to this, a low-cost and scalable materials growth technique (electro-chemical deposition) for II-VI and alloy compounds will be described in Chapter 3. This growth method is also a suitable low-cost technique for growing nanomaterials for various other applications in nanotechnology. In all solar cells, two electrical contacts are needed to extract the photo-generated charge carriers from the device and, hence, these metal/semiconductor (MS) interfaces play a very important role in the overall performance. Chapter 4 summarises the most striking recent breakthroughs which improved the understanding of PV action in thin-film solar cells. This chapter describes the history of the CdTe solar cell, the application of new ideas to this device, the formation of a new concept to describe the solar energy conversion process, and the way forward for the development of the device. Chapter 5 extends the applicability of the Fermi-level pinning concept to CIGS-based solar cells. The next three chapters are devoted to revisiting the current practice in tandem solar cells based on tunnel junctions and the use of multi-layer graded bandgap device structures in solar energy conversion. The latter device design has been tested with a well-researched GaAs/AlGaAs system and experimentally observed the highest reported 1,175 mV open circuit voltage with the highest achievable fill factor of \sim 0.86 for a single device. The new device concept is mainly based on a set of defects within these devices, and Chapter 9 describes the effects of defects on

the performance of solar cells. It also describes the way forward for dealing with defects in order to achieve higher performance in devices. Chapter 10 is new in the second edition. It summarises the progress of graded bandgap devices fabricated using electroplated materials during the two years (2014-2016), achieving 15.3% efficiency. Chapter 11 is for the general public and describes the scenario of a future dominated by solar energy. This is based on author's 27 years of public understanding of science activities and real projects carried out on the ground. The solar village project designed and piloted successfully by the author is described, and the replication programme is indicated in this chapter. There are two short chapters included at the end of this book—Chapter 12 presents the evidence collated to date for Fermi-level pinning in GaAs-based solar cells, and Chapter 13 indicates some thoughts on future directions of thin-film solar cell research. In this second edition, relevant exercises and their solutions have been included. and these will be really useful for academics teaching in this field.

I am grateful to all the people who have supported me to develop and progress in this sector. My PhD supervisors, late Sir Professor Gareth Roberts and Professor Mike Petty at Durham University, put me on the right track at the very beginning, in the late 1970s. Working with active scientists in the field. Professors R. H. Williams and E. H. Rhoderick, enabled me to be well established in this field during my four-year postdoctoral research in University College Cardiff, in early 1980s. Since then, I have worked on and learned the subject from numerous colleagues from chemistry, physics, mathematics, and engineering disciplines, both in academia and in the industry (BP Research, Sunbury). During the last 28 years of my academic career at Sheffield Hallam University, many postdoctoral researchers, 28 PhD students, and numerous visiting researchers contributed to this work in order to understand the chemistry and physics behind these complex materials and devices. University lecturing on relevant subjects like electricity and magnetism, thermodynamics, solid-state physics, quantum mechanics, highspecification materials, device design and manufacture, optical fibre communication, engineering product analysis and design and Si processing in clean room environment for over three decades helped me in understanding these complex devices. This accumulated knowledge, new breakthroughs and recent advances are presented in this book to share with the present and future scientists, engineers, and the general public. I am grateful to my immediate family for their help and support during this journey. In particular, I thank Dahiru Diso, Gavin Tolan, Jayne Wellings, Gafar Muftah, Osama Elsherif, Ajith Weerasinghe, Kingsley Obi Echendu, Fijay Bin Fauzi, Azlian Abdul-Manaf, Olusola Olajide, Mohammed Madugu, Salim Hussein, Ojo Ayotunde, Ruvini Dharmadasa, and Asela Dharmadasa for their contributions during the preparation of this book. I also thank Sidath Kalyanaratne, Nishith Patel, and Ashfaque Alam for preparing some of the diagrams used in this book.

Finally, this book is dedicated to my beloved parents, who worked hard to support me during my childhood with limited resources while living in the sun-rich environment of Sri Lanka. I am hopeful that this book will contribute to reverse this situation for future generations by bringing prosperity to all the people who live wherever the sun is shining.

I. M. Dharmadasa

Senior Staff Grade Professor and Head of Electronic Materials & Sensors Group Materials & Engineering Research Institute Sheffield Hallam University, United Kingdom March 2018

List of Symbols and Abbreviations

- *f* frequency in Hz
- e electronic charge
- k Boltzmann constant
- χ electron affinity
- ε_0 dielectric permittivity of free space
- $\varepsilon_{\rm s}$ dielectric permittivity of semiconductor
- ε_r relative permittivity of semiconductor
- σ electrical conductivity
- *T* temperature in Kelvin
- $\varphi_{\rm b}$ potential barrier height
- $\varphi_{\rm m}$ metal work function
- $E_{\rm g}$ energy bandgap of a semiconductor
- *A** Richardson constant for thermionic emission
- *S* area of a solar cell
- *n* ideality factor of a diode
- *V*_{oc} open circuit voltage of solar cells
- *I*_{sc} short circuit current of solar cells
- *J*_{sc} short circuit current density of solar cells
- FF fill factor, or curve factor, of solar cells
- η solar to electric power conversion efficiency
- CdTe cadmium telluride
- CIGS copper indium gallium diselenide
- GaAs gallium arsenide
- AlAs aluminium arsenide